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This paper presents a d-minimal cut based algorithm to evaluate the performance index
Rd+1 of a distribution network, defined as the probability that a specified demand d + 1
can be successfully distributed through stochastic arc capacities from the source to the des-
tination. To improve the efficiency of solving d-minimal cuts, a novel technique is devel-
oped to determine the minimal capacities of arcs. Also, two new judging criteria are
proposed to detect duplicate d-minimal cuts. Both theoretical and computational results
indicate that our algorithm outperforms the existing methods. Furthermore, a real case
study is provided to illustrate the application of the algorithm.
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1. Introduction

1.1. Background

Logistics distribution networks provide the infrastructure for the storage and distribution of products. In the context of
either general business logistics (Chopra, 2003; Sheu, 2006) or emergency logistics (Edrissi et al., 2015; Sheu, 2007, 2010),
distribution activity is considered as the process of the transfer of products from supply points to demand points. Relative to
other logistics functions, such as procurement, manufacturing, warehousing, inventory and information systems, distribu-
tion is a key function in the entire logistics system and the key link between manufacturers and customers in a supply chain
(Yang, 2013). Furthermore, distribution is a major driver of profitability in a company due to its direct impact on both the
logistics cost and the customer experience (Chopra, 2003). Therefore, a distribution network with better performance plays a
significant role in achieving a number of logistics and supply chain goals, ranging from low operational cost to high customer
service level (Chopra, 2003; Ho and Emrouznejad, 2009; Peng et al., 2011; Tsao and Lu, 2012; Whicker et al., 2009; Yang,
2013).

The performance evaluation of distribution networks is a popular issue in the field of logistics and supply chain manage-
ment. Chopra (2003) pointed out that at the highest level, the performance of a distribution network can be evaluated along
two dimensions: meeting customer needs, and cost of meeting customer needs. Also, many researchers have studied the per-
formance evaluation of distribution networks according to the following questions: ‘‘Have customer demands been ful-
filled?” ‘‘Is the total cost minimized?” and ‘‘Have products been timely delivered?” in which several important factors
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affecting the performance are considered, such as cost, service level, lead time, product availability, transportation capacity,
or market demand (Ho and Emrouznejad, 2009; Nagurney et al., 2014, 2015; Tsao and Lu, 2012; Whicker et al., 2009; Yu and
Nagurney, 2013). Of note is that the distribution networks addressed in the aforementioned studies are deterministic. In
practical applications, deterministic models fail to fully characterize the actual performance of a distribution network that
is always subject to many types of uncertainty (Soltani-Sobh et al., 2015, 2016a). Lin et al. (2013) and Yeh et al. (2014) argued
that any distribution network can be regarded as a typical stochastic-flow network (also called multi-state network), and
assessing the performance of distribution networks in uncertain states is of crucial importance to maintain a high level of
operation in the whole logistics system (Lin, 2007, 2009; Niu et al., 2014; Jane, 2011).

A distribution network can be represented as both sets of nodes and arcs, where each node stands for a supplier, a transfer
center, or a market (e.g., a wholesaler, a retailer, or a customer), and each arc (or called route, link) connecting a pair of nodes
stands for an air route, a land route, or an ocean route. Along each arc, there is a carrier to provide the transportation service.
Owing to the effect of unexpected situation in reality, the available capacity of each carrier is stochastic (Lin et al., 2013; Yeh
et al., 2014). For example, the vehicles owned by one carrier may be in a failure state, partial failure state, or maintenance
state, such that the number of vehicles available is stochastic. In that sense, each arc has several random capacities that can
be described with a probability distribution. And, the goods transported through such a distribution network are reckoned as
a flow. For a distribution network with random arc capacities, the network capacity (the maximum flow from the source to
the destination) is not a fixed value, so whether the network can successfully deliver sufficient amount of commodity to
meet market demand is not a simple yes or no question. In such a case, reliability analysis can serve as a useful tool to mea-
sure the network performance.
1.2. Network reliability

Reliability is a fundamental attribute for the safe operation of any modern technological system, and is generally defined
as the probability that a system performs its intended function within a given time horizon and environment (Zio, 2009;
Peng et al., 2011). This definition is particularly focused on the situation in which components of the system may fail or par-
tially fail due to a variety of uncertainties during operation. Traditionally, network reliability study has been centered mainly
on three aspects (Soltani-Sobh et al., 2016a, 2016b; Chen et al., 2002, 2013; Cedillo-Campos et al., 2014): (i) connectivity
reliability―the probability that the nodes of the network remain connected; (ii) travel time reliability―the probability that
a successful travel from the source to the destination can be made within a specified interval of time; and (iii) capacity reli-
ability―probability that a specified flow demand can be successfully transported from the source to the destination. In addi-
tion to the above-mentioned three types, research has also been dedicated to other reliability measures. For instance, the
study by Soltani-Sobh et al. (2016a) is focused on behavioral reliability by considering the uncertainty in people’s travel
making decision, where behavioral reliability is concerned with the effect of the modified mean behavior of travelers on
the mean network performance. Soltani-Sobh et al. (2016b) utilized performance reliability, defined as the probability that
the performance measure as a function of random variables are in the safe region and acceptable level, to analyze a trans-
portation network subject to unexpected events with multiple uncertainties. Among these reliability measures, capacity reli-
ability which combines the source–destination connection, arc capacity constraint and flow demand is the most commonly
employed indicator to assess the performance of many real-world systems, and is the focus of this paper.
1.3. Capacity reliability evaluation

Reliability evaluation has been shown to be an NP-hard problem (Ball, 1993; Colbourn, 1987), although it has been exten-
sively studied. Common in the literature is the two-terminal capacity reliability (2TCR), a classical reliability index with a
broad range of practical applications (Ramirez-Marquez and Coit, 2005b). Given a stochastic-flow network whose compo-
nents take discrete, non-negative integer values following a certain probability distribution, two-terminal capacity reliability
at demand level d + 1 (2TCRd+1) is defined as the probability that d + 1 units of flow demand can be successfully distributed
from the source to the destination. Virtually, 2TCRd+1 can be looked upon as a combination of the source–destination deliv-
ery, arc capacity, and flow demand (Jane, 2011).

From the perspective of reliability evaluation, a great deal of research (Alexopoulos, 1995; Doulliez and Jamoulle, 1972;
Jane and Laih, 2008, 2010; Jane et al., 1993; Lin, 2002; Yeh, 2002, 2004; Yan and Qian, 2007; Yeh, 2008; Forghani-elahabad
and Mahdavi-Amiri, 2014; Yeh et al., 2015) has been devoted to calculating 2TCRd+1. The algorithms in these studies can be
broadly categorized as direct and indirect methods (Jane and Laih, 2008). The complete enumeration method solves 2TCRd+1

in a simple, and straightforward manner. It enumerates all possible combinations of arc states, so it is computationally
expensive. The popular decomposition method for 2TCRd+1 is proposed by Doulliez and Jamoulle (1972). However,
Alexopoulos (1995) pointed out that this direct decomposition method may yield incorrect results. Recently, Jane and
Laih (2008, 2010) proposed two decomposition algorithms for the straightforward computation of 2TCRd+1. Based on a spe-
cial capacity vector, Jane and Laih’s algorithms repeatedly apply a novel decomposition technique to divide the set of capac-
ity vectors, such that all acceptable (unacceptable) capacity vectors which are capable (incapable) of transmitting the
required flow demand from the source to the destination can be attained. As a result, 2TCRd+1 can be easily obtained by com-
puting the probabilities of all acceptable (unacceptable) capacity vectors.
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In recent years, a large number of indirect algorithms that solve 2TCRd+1 by way of a medium have also been developed. In
particular, one general method for 2TCRd+1 is using minimal cuts (MCs) which are shown to be a powerful tool for reliability
evaluation (Yeh, 2008). A cut is a set of arcs whose removal results in the disconnection of the source node and the desti-
nation node. An MC is a cut whose proper subset is no longer a cut (Lin, 1998; Yeh, 2008). Under the assumption that all
MCs are known in advance, these methods are focused on developing efficient procedures for seeking d-minimal cuts (d-
MCs) (Jane et al., 1993; Lin, 2002; Yeh, 2002, 2004; Yan and Qian, 2007; Yeh, 2008; Forghani-elahabad and Mahdavi-
Amiri, 2014; Yeh et al., 2015). A d-MC, X, is a maximal capacity vector exactly meeting the demand level d, which means
M(X) = d, and M(Y) > d for any Y > X (Lin, 2002). Given that all d-MCs have been found, there are several known methods
available to compute 2TCRd+1, such as the Inclusion-Exclusion (IE) method (Lin, 2002; Yeh, 2004; Forghani-elahabad and
Mahdavi-Amiri, 2014), or the Sum of Disjoint Products (SDP) method (Kuo and Zuo, 2003; Yeh, 2015; Zuo et al., 2007; Bai
et al., 2015). Therefore, the efficient solution of d-MCs is critical to the evaluation of 2TCRd+1. In general, the existing algo-
rithms for solving all d-MCs consist of three major steps (Yeh et al., 2015).

Step 1. Solve all d-MC candidates from MCs.
Step 2. Verify d-MC candidates to attain real d-MCs.
Step 3. Remove duplicate d-MCs.

Since each d-MC is also a d-MC candidate, the existing methods need to search for all d-MC candidates prior to determin-
ing d-MCs (Step 1). But, given that a d-MC candidate is not necessarily a d-MC, a verification procedure is required (Step 2).
The set of d-MCs derived from Step 2 may contain duplicate d-MCs which simply add to the difficulty of reliability evaluation
but do not influence the reliability value, and thus a step for removing duplicate d-MCs is necessary (Step 3).

A body of research has contributed to the solution of the d-MC problem. Jane et al. (1993) first introduced the concept of
d-MC candidates, and proposed a mathematical model to solve all d-MC candidates using the implicit enumeration method.
They also proved that all d-MCs can be obtained from d-MC candidates. Lin (2002) showed that the comparison method can
be used to determine d-MCs from d-MC candidates and eliminate duplicate d-MCs simultaneously. With some improve-
ments in calculating the max-flow value, Yeh (2002) proposed a new method to verify whether a d-MC candidate is a d-
MC. Yeh (2004) further improved his method (Yeh, 2002) to consider how to eliminate duplicate d-MCs using the restriction
method. Based on some new results, Yan and Qian (2007) discussed how to add some constraints to reduce the number of d-
MC candidates during enumeration. Yeh (2008) proposed an algorithm to decrease the number of d-MC candidates, and
found that unsaturated components are the key components for detecting duplicate d-MCs. Forghani-elahabad and
Mahdavi-Amiri (2014) proposed an efficient comparison method to eliminate duplicate d-MCs. By associating a number with
each d-MC, the method compares the associated numbers to detect duplicate d-MCs instead of comparing all d-MCs. More
recently, Yeh et al. (2015) presented some new results, and put forward a method to detect duplicate d-MCs.

1.4. Contributions of this paper

The main objective of this paper is to propose a d-MC based algorithm for evaluating the capacity reliability of a stochastic
distribution network. Specifically, this paper provides three major contributions to the existing literature: (i) a novel tech-
nique is developed to efficiently determine the minimal capacities, called lower capacity bounds herein, of arcs in d-MCs, so
as to advance the efficiency of solving d-MCs; (ii) two judging criteria are proposed to correctly and effectively detect dupli-
cate d-MCs; (iii) A new efficient algorithm is provided to solve all d-MCs. Each contribution is further explained in the fol-
lowing subsections:

1.4.1. A novel technique for determining lower capacity bounds of arcs in d-MCs
It has been shown that the cost of solving d-MCs is directly dependent on the number of d-MC candidates (Yan and Qian,

2007; Yeh, 2008) which is always enormous. Hence, reducing the number of d-MC candidates is undoubtedly the most cost-
effective manner to advance the efficiency of solving d-MCs. The works of Yan and Qian (2007), and Yeh (2008) indicate that
the concept of lower capacity bound can be utilized to decrease the number of d-MC candidates. With this in mind, we
develop a novel technique to efficiently find lower capacity bounds of arcs which can, on the one hand, be used to determine
some special d-MCs without the tedious verification, and can, on the other hand, serve as constraints to shorten the capacity
range of arcs in solving d-MCs, and thus to reduce the number of d-MC candidates.

1.4.2. Two judging criteria to correctly and effectively detect duplicate d-MCs
A major difficulty for solving d-MCs is how to effectively and efficiently eliminate duplicate d-MCs. The restriction

method fails to effectively remove all duplicate d-MCs (Yeh, 2008). The popular comparison method for deleting duplicate
d-MCs is simple yet inefficient (Yeh et al., 2015). Furthermore, the comparison method (Lin, 2002; Yan and Qian, 2007;
Forghani-elahabad and Mahdavi-Amiri, 2014) always ignores a fundamental issue why two distinct MCs can generate iden-
tical d-MCs. Note that a few papers, including Yeh (2008) and Yeh et al. (2015), have made an attempt to seek the reason for
the generation of duplicate d-MCs, but the methods in these papers, i.e., the methods of Yeh (2008) and Yeh et al. (2015), fail
to correctly detect duplicate d-MCs in some special cases. Therefore, there is a growing demand for developing new
approaches to detect duplicate d-MCs. In this paper, we propose two judging criteria to correctly and effectively detect dupli-
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cate d-MCs. The two criteria not only provide efficient approaches to remove duplicate d-MCs, but also find out the under-
lying reason why a d-MC derived from one MC can be generated from another MC once again.

1.4.3. A new efficient algorithm for solving d-MCs
Grounded on the obtained results, a new efficient algorithm is suggested to solve all d-MCs. Both complexity analysis and

numerical examples are provided to show the efficiency of the proposed algorithm. As demonstrated through theoretical and
computational results, the proposed algorithm outperforms the existing algorithms in solving all d-MCs. What is more, a
practical case study of the LCD monitor delivery is presented to illustrate the application of the proposed algorithm.

The rest of this paper is organized as follows: Section 2 introduces the network model, the Sum of Disjoint Product
method for evaluating Rd+1. In Section 3, a new technique is developed to determine lower capacity bounds of arcs based
on which an improved mathematical model with respect to d-MCs is built; also, two judging criteria are presented to cor-
rectly and effectively detect duplicate d-MCs after analyzing the drawbacks of the existing methods. Grounded on these
newfound results, an algorithm for solving d-MCs without duplicates is suggested, together with a discussion on its time
complexity. In Section 4, a simple example is adopted to illustrate how the suggested algorithm works, and computational
experiments are performed to investigate the performance of the suggested algorithm, together with comparisons with the
existing methods. As evidence of the utility of the proposed algorithm, a practical case study regarding LCDmonitors delivery
is provided in Section 5. The final Section presents some concluding remarks, and discusses the future research.

2. Preliminaries

2.1. The stochastic-flow network model

A stochastic-flow network G(V, E,W) consists of a set of nodes V = {1, 2, . . . , n} with n denoting the number of nodes, a set
of arcs E = {e1, e2, . . . , em} with m denoting the number of arcs, and a largest capacity vector W = (W1, W2, . . . , Wm) with
Wi =W(ei) denoting the max-capacity of ei for 1 � i �m. The source node and the destination node in G(V, E, W) are repre-
sented by 1 and n, respectively. The capacity of ei is denoted by X(ei) which takes random integer values from 0 to Wi. A net-
work capacity vector X = (X(e1), X(e2), . . . , X(em)) indicates the current capacity of all arcs. The max-flow of the network under
X (or the network capacity under X) is denoted by M(X), and M(X) is always called the structure function of a stochastic-flow
network (Satitsatian and Kapur, 2006; Niu and Xu, 2012; Niu et al., 2014). The max-flow of the network under the largest
capacity vector W is denoted by D, i.e., D =M(W), then the following relation is observed: M(X) � D for any capacity vector
X. For example, the network in Fig. 1 shows V = {1, 2, 3, 4} with n = 4, whereby 1 is the source node and 4 is the destination
node, E = {e1, e2, e3, e4, e5, e6} with m = 6, and the largest capacity vector W = (4, 3, 4, 1, 3, 3). Considering the largest capacity
vector W = (4, 3, 4, 1, 3, 3), the max-flow of the network under W is M(W) = 10, thereby M(X) � 10 for any capacity vector X.
The notations used throughout this paper are presented in Appendix A.

As with most of the existing literature (Jane et al., 1993; Yeh, 2002, 2008; Yan and Qian, 2007; Yeh et al., 2015), the cur-
rent study assumes that the network model satisfies the following assumptions: (1) Each node is perfectly reliable; (2) The
capacity of each arc ei (1 � i �m) is a non-negative integer-valued random variable which takes values from 0 to Wi accord-
ing to a given probability distribution; (3) The capacities of different arcs are stochastically independent; (4) All flows in the
network obey the conservation law, i.e., total flows into and from a node (not source and destination nodes) are all equal.

Since an unreliable node can be replaced by two reliable nodes and one unreliable arc (refer to Aggarwa et al. (1975), and
Jane and Laih (2010) for the replacement), only the network with reliable nodes is discussed here. In addition, note that there
exists only one d-MC (i.e., the largest capacity vector W) if d = D, thus we merely consider d < D.

2.2. Evaluating Rd+1 in terms of d-MCs

The performance index Rd+1 is defined as the probability that d + 1 units of flow demand can be successfully distributed
from the source to the destination. That is, Rd+1 = Pr{X|M(X) � d + 1} = 1 � Pr{X|M(X) � d}. As stated previously, the SDP
Fig. 1. A stochastic-flow network (Yeh, 2008).
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method is available to evaluate Rd+1 if all d-MCs are determined. Assume X1, X2, . . . , Xq are all d-MCs, and let A1 = {X|X � X1},
A2 = {X|X � X2}, . . . , Aq = {X|X � Xq}, i.e. Ai = {X|X � Xi} (1 � i � q) is a set of the state vectors that are smaller than or equal to Xi,
then Rd+1 can be evaluated via the SDP method as follows:
Rdþ1 ¼ 1� PrfXjMðXÞ 6 dg
¼ 1� Pr A1 [ A2 [ . . . [ Aq

� �
¼ 1� Pr A1 [ ðA2 � A1Þ [ . . . [ Aq � [q�1

j¼1 Aj

� �� �

¼ 1�
Xq

i¼1

PrðBiÞ

ð1Þ
where B1 = A1, Bi = Ai � [i�1
j¼1Aj, i = 2, 3, . . . , q, Pr(Bi) =

P
X2BiPrðXÞ, and Pr(X) =

Qm
k¼1PrðXðekÞÞ.

Recently, some works have been reported to improve the traditional SDP method, but they are beyond the focus of this
paper, and readers can refer to Zuo et al. (2007), Bai et al. (2015), and Yeh (2015) for details.
3. The suggested algorithm

A capacity vector X = (X(e1), X(e2), . . . , X(em)) is a d-MC if and only if M(X) = d, and M(X + 0(ei)) > d for each ei 2 U(X) where
0(ei) = (0, 0, . . . , 0, 1, 0, . . . , 0), i.e. capacity is 1 for ei and zero for others, and U(X) = {ei|X(ei) <W(ei)} is the set of unsaturated
arcs in X. That is, two conditions must be satisfied for a d-MC X: (1) the network capacity under X is d; (2) network capacity is
sensitive to the capacity increase of any unsaturated arc, i.e. the increase in capacity of one unsaturated arc results in a larger
network capacity (above d). To facilitate understanding the concept of d-MC, we use two examples to illustrate it. Given the
demand level d = 8, we consider a capacity vector X = (2, 2, 4, 1, 3, 3) of the network in Fig 1. The network under X is shown in
Fig. 2 (1), and the network capacity under X is M(X) = 8 (refer to Fig. 2 (1)-maxflow). Thus, X satisfies the first condition. It is
clear that e1 and e2 are unsaturated arcs denoted by dotted lines in Fig. 2 (1). The network under X + 0(e1) is shown in Fig. 2
(2), and the network capacity under X + 0(e1) is M(X + 0(e1)) = 9 (refer to Fig. 2 (2)-maxflow). Similarly, the network capacity
under X + 0(e2) isM(X + 0(e2)) = 9 (refer to Fig. 2 (3)-maxflow). Thus, X satisfies the second condition. Because X = (2, 2, 4, 1, 3,
3) satisfies both conditions, it is an 8-MC. We consider another capacity vector X = (3, 3, 2, 1, 3, 3), and Fig. 3 illustrates the
network capacity under different cases. It can be seen from Fig. 3 (2)-maxflow that the network capacity under X + 0(e1) is M
(X + 0(e1)) = 8 = d, thereby X = (3, 3, 2, 1, 3, 3) does not satisfies the second condition, i.e. X = (3, 3, 2, 1, 3, 3) is not an 8-MC.
Since a d-MC is also a d-MC candidate, the existing methods need to search for all d-MC candidates prior to determining d-
MCs. When it is assumed that all MCs are known in advance, the existing algorithms employ the following model proposed
by Jane et al. (1993) to search for d-MC candidates.

Lemma 1. If a capacity vector X = (X(e1), X(e2), . . . , X(em)) is a d-MC, then there exists at least one MC C such that the following
conditions are satisfied:
X
ei2C

XðeiÞ ¼ d ð2Þ

0 6 XðeiÞ 6 MinfWi;dg for all ei 2 C ð3Þ

XðeiÞ ¼ Wi for all ei R C ð4Þ
Each feasible solution to conditions (2)(4) is a d-MC candidate (Jane et al., 1993). By Lemma 1, a d-MC candidate is gen-
erated from at least one MC. A d-MC candidate is not necessarily a d-MC, thus there is also a need to verify it. The well-known
method for verifying d-MC candidates is based on Lemma 2 (refer to Appendix A). In addition, different MCs may generate
identical d-MCs, i.e. duplicate d-MCs, so a step to detect and remove duplicate d-MCs is indispensable. In the following sub-
sections, we will detail the vital theoretical results based on which a new efficient algorithm is suggested to solve all d-MCs.

3.1. A novel technique for finding lower capacity bounds of arcs

As mentioned previously, a cost-effective scheme of increasing the efficiency of solving d-MCs is to reduce the number of
d-MC candidates. Lemma 1 shows that the number of d-MC candidates is primarily determined by condition (3) which spec-
ifies the capacity range of ei in solving d-MC candidates. Hence, if the capacity range in condition (3) can be narrowed, the
number of d-MC candidates will be potentially decreased. To arrive at this aim, some works determine the minimal capacity
of ei, instead of 0, in condition (3) by introducing the concept of lower capacity bound. Lower capacity bound L(ei) of ei
(1 � i �m) is defined as the minimal capacity of ei, such that the max-flow from the source node to the destination node
is equal to d (Yeh, 2008). As a result, L(ei) can be regarded as a tighter restriction for the capacity bound of ei in seeking
d-MC candidates.



Fig. 2. An illustration of 8-MC X = (2, 2, 4, 1, 3, 3).
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Yan and Qian (2007) first proposed a method to find L(ei) (1 � i �m). The time complexity of the method by Yan and Qian
is O(mplog2p), where p is the number of MCs. Since the number of MCs can be as large as 2n�2 (Shier, 1991), the method of
Yan and Qian with the time complexity of O(mplog2p) = O(mn2n�2) is inefficient. Yeh (2008) proposed a method to seek L(ei)
(1 � i �m) on the basis of the classical binary-search method and max-flow method. The method of Yeh finds L(ei)
(1 � i �m) by implementing the max-flow algorithm multiple times. Yeh (2008) demonstrated that his algorithm is more
efficient than the one by Yan and Qian (2007). But, there is a minor defect in Yeh’s method, such that it may work improperly
(Forghani-elahabad and Mahdavi-Amiri, 2013).

According to the definition of lower capacity bound, L(ei) (1 � i �m) actually represents the minimal capacity level the
arc ei should provide to exactly satisfy the flow demand d. For example, Fig. 4 shows L(e3) = 2 when d = 8, and if X(e3) < L
(e3) = 2, M(X) < 8 for any capacity vector X. As can be seen below, a novel technique is developed to find L(ei) (1 � i �m)
by defining a special capacity vector. The proposed technique is based merely on the max-flow algorithm, and the max-
flow algorithm is implemented only once to find L(ei). Thus, the proposed technique is more desirable in the determination
of L(ei) (1 � i �m).

Theorem 1. Given the demand level d (0 � d < D), let W(0i) denote a special capacity vector in which capacity level is 0 for ei
(1 � i �m) and the largest for other arcs, i.e. W(0i) = (W1, W2, . . . , Wi-1, 0, Wi+1, . . . , Wm), then
LðeiÞ ¼
does not exist if MðWð0iÞÞ > d

0 if MðWð0iÞÞ ¼ d

d�MðWð0iÞÞ if MðWð0iÞÞ < d

8><
>: ð5Þ



Fig. 3. An illustration of non-8-MC X = (3, 3, 2, 1, 3, 3).
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Proof. Obviously, L(ei) � 0 holds. If M(W(0i)) > d, it means that even when the capacity of ei is 0, the max-flow from the
source node to the destination node is above d. Thus, there does not exist any L(ei) satisfying the definition of lower capacity
bound, i.e. L(ei) does not exist.

First, note that given a capacity vector X = (X(e1), X(e2), . . . , X(em)), if M(X) = d, L(ei) � X(ei) follows from the definition of L
(ei). If M(W(0i)) = d, let X =W(0i) = (W1, W2, . . . , Wi�1, 0, Wi+1, . . . , Wm), then M(X) = d. As a result, L(ei) � X(ei) = 0 holds. But
since L(ei) � 0 holds, L(ei) = 0 can be obtained.

If M(W(0i)) < d, since M(W) = D > d, at least d �M(W(0i)) units of flow must travel through arc ei such that d units of flow
can be transmitted from the source node to the destination node. Hence, L(ei) = d �M(W(0i)).h

For ease of understanding Theorem 1, an example of finding L(e3) of e3 in Fig. 1 is presented in Fig. 5. By Theorem 1, it is
only necessary to compute M(U(0i)) for finding L(ei) (1 � i �m), thereby the time complexity of finding lower capacity
bounds of all arcs is O(mn2log3n), where O(n2log3n) is the time complexity of calculating the max-flow (Ahuja et al.,
1997). Given that O(mn2log3n)� O(mn2n�2), the proposed technique derived from Theorem 1 is more efficient than the
method by Yan and Qian (2007).

In Theorem 1, if M(W(0i)) � d, the value of L(ei) can be determined; but if M(W(0i)) > d, no value of L(ei) satisfies the def-
inition of lower capacity bound. In such cases, the lower capacity bound is non-existent. That is, L(ei) does not always exist.
The nonexistence of L(ei) implies that even if the minimal capacity of ei is 0, the max-flow from the source node to the des-
tination node is larger than d. The following theorem, compared with Theorem 1, is much more simple in determining the
nonexistence of L(ei) (1 � i �m).



Fig. 4. Lower capacity bound of e3 when d = 8.

Fig. 5. An illustration of Theorem 1.
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Theorem 2. If D �Wi > d, L(ei) does not exist (1 � i �m).
Proof. By the definition of D, M(W(0i)) and Wi, we have D �M(W(0i)) �Wi. If D �Wi > d, it is easy to obtain M(W(0i)) �
D �Wi > d, i.e. M(W(0i)) > d. Thus, L(ei) does not exist (1 � i �m) by Theorem 1. h

It should be noted that if D �Wi � d, the existence of L(ei) (1 � i �m) is unspecified. In such a case, Theorem 1 is still
required to determine whether L(ei) (1 � i �m) exists or not. Thus, it is more reasonable to combine Theorem 1 and Theo-
rem 2 to find L(ei) (1 � i �m). The role of the lower capacity bound depends on the fact that the minimal capacity of ei for all
ei 2 C in a d-MC derived from C should not be below its lower capacity bound (refer to Corollary 2 in Appendix A). Conse-
quently, the minimal capacity 0 in condition (3) can be replaced by L(ei) when L(ei) exists. If L(ei) does not exist, the minimal
capacity 0 of ei in condition (3) remains the same. Thus, we can obtain an improved model with respect to d-MCs.

Theorem 3. If a capacity vector X = (X(e1), X(e2), . . . , X(em)) is a d-MC, then there exists at least one MC C such that the following
conditions are satisfied:
X
ei2C

XðeiÞ ¼ d ð6Þ

LðeiÞ 6 XðeiÞ 6 MinfWi; dg when LðeiÞ exists for all ei 2 C ð7Þ

0 6 XðeiÞ 6 MinfWi;dg when LðeiÞ does not exist for all ei 2 C ð8Þ

XðeiÞ ¼ Wi for all ei R C ð9Þ
Proof. Directly from Lemma 1 and Corollary 2. h
The goal of introducing lower capacity bounds, other than to cut down the number of d-MC candidates, is also to find

some special d-MCs without any tedious verification. Corollary 3 in Appendix A presents these special d-MCs with the dis-
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tinct feature that there is only one unsaturated component in every d-MC. Since the d-MCs with only one unsaturated
component can be determined by Corollary 3, they should be removed from Theorem 3. Thus, the following theorem is at
hand.

Theorem 4. If a capacity vector X = (X(e1), X(e2), . . . , X(em)) is a d-MC with |U(X)| > 1, then there exists at least one MC C such that
the following conditions are satisfied:
X

ei2C
XðeiÞ ¼ d ð10Þ

LðeiÞ þ 1 6 XðeiÞ 6 MinfWi;dg when LðeiÞ exists for all ei 2 C ð11Þ

0 6 XðeiÞ 6 MinfWi;dg when LðeiÞ does not exist for all ei 2 C ð12Þ

XðeiÞ ¼ Wi for all ei R C ð13Þ
Proof. Directly follows from Theorem 3 and Corollary 3. h
As soon as lower capacity bounds of arcs are found, the d-MCs with only one unsaturated component can be directly

derived from Corollary 3. Accordingly, the d-MCs with more than one unsaturated component can be solved by Theorem 4.
After the determination of d-MCs, the next step is to detect whether they are duplicates.

3.2. Two judging criteria for detecting duplicate d-MCs

The d-MCs are duplicate in the sense that they are obtained multiple times from different MCs. The well-known compar-
ison method is inefficient because it detects a duplicate d-MC by comparing it with all of the other d-MCs (Yeh, 2008; Yeh
et al., 2015). Yeh (2008) found that unsaturated components in d-MCs are the key components for detecting duplicates, and
proposed a method to detect duplicate d-MCs. Nevertheless, Yeh’s method may work improperly in some special cases (refer
to the example in Appendix A). Hence, there is a demand for developing new efficient approaches to identify duplicate d-
MCs.

To develop an efficient method for identifying duplicate d-MCs, the key is to discover the reason for the generation of
duplicate d-MCs, which is precisely neglected by the comparison method. Particularly, we believe that there should exist
a specific relationship between the MCs, such that they can generate identical d-MCs. With this in mind, we attempt to
explore the underlying reason for duplicates, and present two new judging criteria to identify duplicate d-MCs.

Before providing the judging criteria, we utilize a simple example to show the relationship between two MCs when they
generate the same d-MCs. The network in Fig. 1 has 4 MCs, and the related information is shown in Fig. 6 (1). Given the

demand level d = 8, Fig. 6 (2) describes an 8-MC X = (4, 1, 3, 1, 3, 3) generated from C1, and e2, e3 are unsaturated arcs whose

capacities are underlined. If X = (4, 1, 3, 1, 3, 3) is also an 8-MC generated from another MC Cj (j– 1), then Cj must contain e2
and e3 (Otherwise, e2 or e3 are saturated arcs in all of the 8-MCs generated from Cj according to Eq. (4)). That is, U(X) = {e2, e3}

# Cj holds. The relationship {e2, e3} # Cj means C3 is the MC that also generates the 8-MC X = (4, 1, 3, 1, 3, 3). Fig. 6 (3)

describes the 8-MC X = (4, 1, 3, 1, 3, 3) generated from C3. In addition, Fig. 6 (4) demonstrates the following relationship
between C1 and C3: Cap(C1) = Cap(C3) = 11, i.e., the capacities of C1 and C3 are equal. In the following, we formally present
two theorems that pinpoint the sufficient and necessary conditions for yielding duplicate d-MCs, and are vitally important
to the suggested algorithm.

Theorem 5. Let Ci and Cj be two distinct MCs and X be a d-MC generated from Ci, X is also a d-MC generated from Cj, i.e. X is a
duplicate d-MC, if and only if Cap(Ci) = Cap(Cj), i.e.

P
e2Ci

WðeÞ ¼ P
e2Cj

WðeÞ, and U(X) # Cj.

Proof.

(1) If X is also a d-MC generated from MC Cj, by Corollary 4, it is easy to have
X
e2E

XðeÞ ¼ dþ
X
e2E

WðeÞ �
X
e2Ci

WðeÞ ¼ dþ
X
e2E

WðeÞ �
X
e2Cj

WðeÞ:
Then, one can obtain
X
e2Ci

WðeÞ ¼
X
e2Cj

WðeÞ: ð14Þ
Meanwhile, it is clear to have U(X) # Cj by Corollary 5.



Fig. 6. The relationship between two MCs when generating identical d-MCs.
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(2) Suppose
P

e2Ci
WðeÞ ¼ P

e2Cj
WðeÞ and U(X) # Cj.

Since X is a d-MC generated from MC Ci, by Lemma 1, one have
d ¼
X
e2Ci

XðeÞ ¼
X

e2UðXÞ
XðeÞ þ

X
e2ðCi�UðXÞÞ

WðeÞ: ð15Þ
Now compute
P

e2Cj
XðeÞ, and
X
e2Cj

XðeÞ ¼
X

e2ðCj\UðXÞÞ
XðeÞ þ

X
e2ðCj�UðXÞÞ

WðeÞ: ð16Þ
Because U(X) # Cj, then
X
e2Cj

XðeÞ ¼
X

e2UðXÞ
XðeÞ þ

X
e2Cj

WðeÞ �
X

e2UðXÞ
WðeÞ: ð17Þ
Also, because
P

e2Ci
WðeÞ ¼ P

e2Cj
WðeÞ, then
X
e2Cj

XðeÞ ¼
X

e2UðXÞ
XðeÞ þ

X
e2Ci

WðeÞ �
X

e2UðXÞ
WðeÞ: ð18Þ
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Meanwhile, because U(X) # Ci, then
X
e2Cj

XðeÞ ¼
X

e2UðXÞ
XðeÞ þ

X
e2ðCi�UðXÞÞ

WðeÞ ð19Þ
Based on Eq. (15), one can obtain
X
e2Cj

XðeÞ ¼
X
e2ci

XðeÞ ¼ d: ð20Þ
In addition, U(X) # Cj means X(e) =W(e) for all e R Cj. Thus, by Lemma 1, X is a d-MC candidate generated from Cj. As a result,
X is also a d-MC derived from MC Cj because X is a d-MC. h

Theorem 5 reveals that for a d-MC X derived from Ci, both the capacity of Ci and the unsaturated components in X are the
key points for detecting whether X is a duplicate d-MC. If the capacity of Ci is equal to that of Cj and all of the unsaturated
components in X belong to Cj, X can be generated from Cj once again, i.e. X is a duplicate d-MC. Notably, the condition Cap(Ci)
= Cap(Cj) is indispensable in detecting duplicate d-MCs. If Cap(Ci)– Cap(Cj), it is impossible for Ci and Cj to generate identical
d-MCs. Thus, there is no need to check whether the d-MCs generated from Ci (Cj) are duplicate d-MCs derived from Cj (Ci)
when Cap(Ci)– Cap(Cj). Besides, given a d-MC X, since unsaturated components and saturated components in X are comple-
mentary (i.e. every component in X is either unsaturated component or saturated component), we can try to detect duplicate
d-MCs in terms of saturated components. For example, it can be seen from Fig. 6 that (C1 � C3) = {e1} and X(e1) =W(e1), i.e. all
of the arcs belonging to (C1 � C3) are saturated when X is also an 8-MC generated from C3. Consequently, we present the
other theorem.

Theorem 6. Let Ci and Cj be two distinct MCs and X be a d-MC generated from Ci, X is also a d-MC generated from Cj, i.e. X is a
duplicate d-MC, if and only if Cap(Ci) = Cap(Cj), i.e.

P
e2Ci

WðeÞ ¼ P
e2Cj

WðeÞ, and X(e) =W(e) for all e 2 (Ci � Cj).

Proof. Here, it is only necessary to prove U(X) # Cj is equivalent to X(e) =W(e) for all e 2 (Ci � Cj).

(1) Since X is a d-MC generated from Ci, U(X) # Ci follows from Corollary 5. Thus, if U(X) # Cj, we can obtain U(X) # (Ci \
Cj), which implies X(e) =W(e) for all e 2 (Ci � Cj).

(2) That X(e) =W(e) for all e 2 (Ci � Cj) means U(X) # (Ci \ Cj). Also, it is trivial to have (Ci \ Cj) # Cj. Hence, U(X) # Cj
holds. h

It is noteworthy that the method of Yeh et al. (2015) detects duplicate d-MCs using only the condition ‘‘X(e) =W(e) for all
e 2 (Ci � Cj)”, so the other condition Cap(Ci) = Cap(Cj) is also neglected by Yeh et al. (2015). As a result, both methods by Yeh
(2008) and Yeh et al. (2015) fail to correctly detect duplicate d-MCs. Now Theorems 5 and 6 have provided two judging cri-
teria for detecting duplicate d-MCs, and both theorems reveal that just because there exists a special relationship between
two MCs, they can generate identical d-MCs. Therefore, the two theorems not only provide two approaches to correctly
detect duplicate d-MCs, but also explicitly answer the question of why a d-MC can be generated from distinct MCs. In this
sense, Theorems 5 and 6 provide new insights into the reason for the generation of duplicate d-MCs, which is always ignored
by the comparison-based methods (Lin, 2002; Yan and Qian, 2007; Forghani-elahabad and Mahdavi-Amiri, 2014) which
detect a duplicate d-MC by merely comparing it with all of the other d-MCs.

3.3. A new algorithm for solving all d-MCs without duplicates

Grounded on the above discussions, an algorithm for solving all d-MCs without duplicates is provided as follows.

input: All MCs C1, C2, . . . ,Cp in a stochastic-flow network G(V, E, W) and demand level d.
output: All d-MCs without duplicates.
Step 0. Calculate Cap(Ci) for all i = 1, 2, . . . , p, and let D = min {Cap(Ci)|i = 1, 2, . . . , p}.
Step 1. If D �Wi > d, L(ei) does not exist, otherwise, find L(ei) by Theorem 1, where 1 � i �m. X = {X|X = (W1, W2, . . . , Wi-1,
L(ei), Wi+1, . . . , Wm) if L(ei) exists for 1 � i �m}.
Step 2. All MCs are grouped by their capacities, such that the MCs with identical capacity are put into one group. Suppose
that all MCs are identified as k groups: U1, U2, . . . , Uk, and the number of MCs in the group Uk (1 � k � k) is pk (then,
p1 + p2 + � � � + pk = p).
Step 3. k = 1.
Step 4. Solve all d-MCs from the MCs in Uk according to the following steps:
Step 4.1. Solve all d-MCs from the first MC Ck1 using Eqs. (10)–(13) and Lemma 2, and let X ¼ X[ {d-MCs from Ck1 }. If
pk = 1, go to Step 5.
Step 4.2. i = 2.



Table 1
Time complexities of different algorithms.

Algorithm Time complexity

Jane et al. (1993), Lin (2002), Yeh (2002, 2004), and Yan and Qian (2007) O(mp2r2)
Yeh (2008), Forghani-elahabad and Mahdavi-Amiri (2014), and Yeh et al. (2015) O(mp2r)
The proposed algorithm O

Pk
k¼1mp2kr

� �

Note: p1 + p2 + � � � + pk = p, and
Pk

k¼1mp2kr � O(mp2r) < O(mp2r2).
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Step 4.3. find all d-MC candidates, say Xkij where j = 1, 2, . . . , J1, from the ith MC Cki using Eqs. (10)–(13). If no d-MC
candidate exists, go to Step 4.7.
Step 4.4. If Cap(Cki ) = D, Xkij is a d-MC where j = 1, 2, . . . , J1, and go to Step 4.6.
Step 4.5. Use Lemma 2 to check whether Xkij is a d-MC where j = 1, 2, . . . , J1. If none of them is a d-MC, go to Step 4.7;
otherwise, suppose Xkij is a d-MC where j = 1, 2, . . . , J2.
Step 4.6. For every d-MC Xkij where j = 1, 2, . . . , J2 (J1), if there exists one r, 1 � r � i � 1, such that U(XkijÞ#Ckr (or
XkijðeÞ =W(e) for all e 2 (Cki � Ckr )), Xkij is a duplicate d-MC; otherwise, X ¼ X[ {Xkij}.
Step 4.7. If i < pk, let i = i + 1, and return to Step 4.3.

Step 5. If k < k, let k = k + 1, and return to Step 4; otherwise, X is the set of all d-MCs and stop.

Note that Steps 0, 1, and 2 can be regarded as the pre-processing steps, in which the capacity of each MC is calculated
(Step 0), lower capacity bounds of arcs and the d-MCs with only one unsaturated component are determined (Step 1),
and all MCs are distinguished by their capacities (Step 2). The aim of grouping MCs in Step 2 is to reduce the cost of detecting
duplicate d-MCs in the subsequent steps, because there is only need to verify whether the MCs from the same group generate
duplicate d-MCs. Step 4 is the key step for solving all d-MCs with more than one unsaturated component. Of note is that for
the first MC in each group Uk (1 � k � k), there is no need to detect duplicate d-MCs (Step 4.1). Step 4.3 is to solve all d-MC
candidates from the ith MC Cki . Steps 4.4 and 4.5 are used to check whether the obtained d-MC candidates are d-MCs. The
aim of Step 4.6 is to detect and remove duplicate d-MCs. Step 4.7 is to control the iteration for solving MCs in the group Uk,
and Step 6 is to control the iteration for solving the group Uk.

The time complexity of the suggested algorithm is discussed as follows: Step 0 needs O(mp) time to calculate Cap(Ci) and
D, where i = 1, 2, . . . , p. Step 1 requires O(mn2log3n) time to find all lower capacity bounds, where O(n2log3n) is the time
complexity for computing the max-flow (Ahuja et al., 1997), and O(m) time to find the d-MCs with only one unsaturated
component, so Step 1 requires O(mn2log3n) time. Step 2 takes O(plogp) time to sort and group all MCs. Steps 3 and 5 take
O(1) time. Therefore, the time complexity of Steps 0 to 3 is O(p(logp +m)). Step 4.1 takes O((m2 + n2log3n)r) time to derive d-
MCs from the first MC Ck1 (Yeh, 2008). Steps 4.2, 4.4, and 4.7 require O(1) time. Note that pkr is the total number of d-MC
candidates obtained from Step 4.3, and it takes O(m2 + n2log3n) time to verify whether a d-MC candidate is a d-MC in Step 4.5
(Yeh, 2002). As a result, the time complexity of Step 4.5 is O((m2 + n2log3n)(pk � 1)r). For a d-MC Xkij derived from Cki , it takes
at most O((i � 1)m) time to detect whether it is a duplicate in Step 4.6, where i � 1 denotes the maximum times for checking
whether there exists one r, such that U(XkijÞ#Ckr (or XkijðeÞ =W(e) for all e 2 (Cki � Ckr )). Then, Step 4.6 requires O(mr(1 + 2
+ . . . + pk � 1)) = O(mp2

kr) amount of time to detect all of the duplicate d-MCs in the group Uk in the worst case. Conse-
quently, The time complexity of Step 4 is O(mp2

kr). Note that there are k groups, and the total time complexity of Step 3

to Step 5 is thus O
Pk

k¼1mp2
kr

� �
. Therefore, the time complexity of the suggested algorithm is O(p(logp +m)) + O

Pk
k¼1mp2

kr
� �

= O
Pk

k¼1mp2
kr

� �
. That is, the time complexity of the suggested algorithm for solving all d-MCs without dupli-

cates is O
Pk

k¼1mp2
kr

� �
, where m is the number of arcs, pk is the number of MCs in the group Uk and p1 + p2 + � � � + pk = p

where p isthe number of MCs, r ¼ Min mþ d� 1
d

� �
;
Q

ei2EðMinfWðeiÞ; dg þ 1Þ
� 	

is the number of d-MC candidates derived

from each MC (Yeh, 2008).
Note that the time complexity of the methods by Jane et al. (1993), Lin (2002), Yeh (2002, 2004), and Yan and Qian (2007)

is O(mp2r2), and the time complexity of the methods by Yeh (2008), Forghani-elahabad and Mahdavi-Amiri (2014), and Yeh

et al. (2015) is O(mp2r). In view of the fact that O
Pk

k¼1mp2
kr

� �
= O(mr(p2

1 þ p2
2+ � � � +p2

k )) � O(mr(p1 + p2 + � � � + pk)2) = O

(mp2r) < O(mp2r2), it is trivial to conclude that the suggested algorithm is more efficient than the existing methods. For com-
parison, the time complexities of different algorithms are presented in Table 1.

4. Numerical examples

4.1. An illustrative example

To elucidate the suggested algorithm, a simple network in Fig. 1 is adopted to trace the steps of the algorithm. Fig. 1 con-
tains 4 nodes and 6 arcs, and is adopted from Yeh (2008). There are 4 MCs in Fig. 1: C1 = {e1, e2, e3}, C2 = {e1, e3, e4, e6}, C3 = {e2,
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e3, e4, e5}, and C4 = {e3, e5, e6}. The largest capacities of arcs e1, e2, e3, e4, e5, e6 are W(e1) = 4, W(e2) = 3, W(e3) = 4, W(e4) = 1, W
(e5) = 3, and W(e6) = 3, respectively. The capacity probabilities of all arcs in Fig. 1 are presented in Table 2. Provided that the
demand level is 9, the reliability index R9 can be evaluated in terms of 8-MCs (i.e. d = 8). The following procedure describes
how to obtain all 8-MCs. After finding all 8-MCs, R9 are calculated using the SDP method. To facilitate the understanding of
the whole procedure, two special notations are used throughout the step-by-step solutions:

(1) ‘‘X(ei)” denotes that ei is in the related MC and X(ei) =W(ei).

(2) ‘‘X(ei)” denotes that ei is in the related MC and X(ei) <W(ei).

Solve:

Step 0. Cap(C1) = 11, Cap(C2) = 12, Cap(C3) = 11, Cap(C4) = 10, and D = 10.
Step 1. 10 �Wi < 8 for i = 1, 2, 3, 5, 6, then, according to Theorem 1, it is easy to obtain L(e1) = 1, L(e2) = 0, L(e3) = 2, L(e5)

= 1, and L(e6) = 1. 10 �W4 = 9 > 8, thus L(e4) does not exist. As a result, X = {(1, 3, 4, 1, 3, 3), (4, 0, 4, 1, 3, 3), (4, 3, 2, 1, 3, 3),

(4, 3, 4, 1, 1, 3), (4, 3, 4, 1, 3, 1)}. The value of L(ei) (1 � i � 6) and the corresponding 8-MCs are shown in Table 3.
Step 2. 4 MCs are grouped as follows: U1 = {C4}, and p1 = 1; U2 = {C1, C3}, and p2 = 2, and U3 = {C2}, and p3 = 1; k = 3.
Step 3. k = 1.
Step 4. Solve all 8-MCs from the MCs in U1 according to the following steps:
Tab
Cap

A

e
e
e
e
e
e

Step 4.1. As C4 is the first MC inU1, solve all 8-MCs from C4 using Eqs. (10)–(13) and Lemma 2, and obtain three 8-MCs:

(4, 3, 3, 1, 2, 3), (4, 3, 3, 1, 3, 2), and (4, 3, 4, 1, 2, 2). Then letX ¼ X[ {(4, 3, 3, 1, 2, 3), (4, 3, 3, 1, 3, 2), (4, 3, 4, 1, 2, 2)}. p1 = 1,
then go to Step 5.

Step 5. k = 1 < k, let k = 2, and return to Step 4.
Step 4. Solve all 8-MCs from the MCs in U2 according to the following steps:

Step 4.1. As C1 is the first MC in U2, solve all 8-MCs from C1 using Eqs. (10)–(13) and Lemma 2, and obtain five 8-MCs:

(2, 2, 4, 1, 3, 3), (2, 3, 3, 1, 3, 3), (3, 1, 4, 1, 3, 3), (3, 2, 3, 1, 3, 3), and (4, 1, 3, 1, 3, 3). Then let X ¼ X[ {(2, 2, 4, 1, 3, 3), (2, 3,

3, 1, 3, 3), (3, 1, 4, 1, 3, 3), (3, 2, 3, 1, 3, 3), (4, 1, 3, 1, 3, 3)}. p2 – 1.
Step 4.2. i = 2.
Step 4.3. C3 is the second MC inU2, then find all 8-MC candidates from C3 using Eqs. (10)–(13), and obtain seven 8-MC

candidates: (4, 1, 3, 1, 3, 3), (4, 1, 4, 0, 3, 3), (4, 1, 4, 1, 2, 3), (4, 2, 3, 0, 3, 3), (4, 2, 3, 1, 2, 3), (4, 2, 4, 0, 2, 3), (4, 3, 3, 0, 2, 3).
Step 4.4. Cap(C3) = 11– D.

Step 4.5. Use Lemma 2 to check the obtained seven 8-MC candidates, and obtain (4, 1, 3, 1, 3, 3), (4, 1, 4, 0, 3, 3), (4, 1, 4,

1, 2, 3), (4, 2, 3, 0, 3, 3), and (4, 2, 4, 0, 2, 3) are 8-MCs.

Step 4.6. For the 8-MC (4, 1, 3, 1, 3, 3), when r = 1, U((4, 1, 3, 1, 3, 3)) = {e2, e3} # C1 = {e1, e2, e3}, then (4, 1, 3, 1, 3, 3) is a

duplicate 8-MC. But, (4, 1, 4, 0, 3, 3), (4, 1, 4, 1, 2, 3), (4, 2, 3, 0, 3, 3), and (4, 2, 4, 0, 2, 3) are not duplicate 8-MCs, then let

X ¼ X[ {(4, 1, 4, 0, 3, 3), (4, 1, 4, 1, 2, 3), (4, 2, 3, 0, 3, 3), (4, 2, 4, 0, 2, 3)}.
Step 4.7. i = 2 = p2.

Step 5. k = 2 < k, let k = 3, and return to Step 4.
le 2
acities & capacity probabilities of arcs in Fig. 1.

rc Capacity Capacity probabilities

1 0 1 2 3 4 0.01 0.01 0.03 0.05 0.90
2 0 1 2 3 – 0.01 0.02 0.02 0.95 –
3 0 1 2 3 4 0.01 0.01 0.03 0.05 0.90
4 0 1 – – – 0.02 0.98 – – –
5 0 1 2 3 – 0.01 0.02 0.02 0.95 –
6 0 1 2 3 – 0.01 0.02 0.02 0.95 –

Table 3
Lower capacity bounds and the corresponding 8-MCs.

ei L(ei) The corresponding 8-MCs

e1 1 (1, 3, 4, 1, 3, 3)
e2 0 (4, 0, 4, 1, 3, 3)
e3 2 (4, 3, 2, 1, 3, 3)
e4 Does not exist –
e5 1 (4, 3, 4, 1, 1, 3)
e6 1 (4, 3, 4, 1, 3, 1)
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Step 4. Solve all 8-MCs from the MCs in U3 according to the following steps:
Step 4.1. As C2 is the first MC inU3, solve all 8-MCs from C2 using Eqs. (10)–(13) and Lemma 2, and obtain one 8-MCs:

(2, 3, 4, 0, 3, 2). Then let X ¼ X[ {(2, 3, 4, 0, 3, 2)}. p1 = 1, then go to Step 5.
Step 5. k = 3 = k, then X is the set of all 8-MCs, and stop.

The final results are indicated in Table 4. Then, according to the obtained 8-MCs and the SDP method, the performance
index R9 can be readily calculated: R9 = 0.860262.

4.2. Computational experiments

In the previous section, we stated that the suggested algorithm is grounded on the newly obtained results, i.e. (1) a new
technique for determining lower capacity bounds of arcs; (2) two judging criteria for detecting duplicate d-MCs. The detailed
theoretical analyses have demonstrated that the suggested algorithm holds a performance advantage over the existing algo-
rithms. To further explore the performance of the suggested algorithm, this section conducts computational experiments to
compare it with several typical algorithms, i.e. Lin’s algorithm (2002), Yan and Qian’s algorithm (2007), Forghani-elahabad
and Mahdavi-Amiri’s algorithm (2014), and the algorithm of Yeh et al. (2015). Since one condition for detecting duplicate d-
MCs is neglected by Yeh et al. (2015), we add it to their method. All of the algorithms are coded into MATLAB programs, and
implemented on a PC with Intel(R) Core (TM) i5-3210 M 2.50 GHz CPU. In addition, the suggested algorithm is identified by
which criterion is used to detect duplicates as two types: the suggested algorithm using Theorem 5 to detect duplicates, and
the suggested algorithm using Theorem 6 to detect duplicates.

Due to the NP-hard nature of the d-MC problem and the limitations of the PC, we choose one medium-sized network
(Fig. 7 (1)) and two relatively larger networks (Fig. 7 (2), (3)) as benchmark networks to conduct the numerical experiments.
The three networks are cited from Soh and Rai (1993), and Ramirez-Marquez and Coit (2005b). To make comprehensive
comparisons, four different demand levels are solved for each benchmark network, i.e. d = 5 (5-MC), d = 7 (7-MC), d = 9
(9-MC), and d = 11 (11-MC). Experimental results on the number of d-MC candidates and the computational time are sum-
marized in Tables 5 and 6. Additionally, to clearly exhibit the performance of different algorithms, the relative ratios of com-
putational times are indicated in Table 7. From Tables 5–7, the following observations are made:
Table 4
The 8-MC candidates and 8-MCs with more than one unsaturated component.

U1: C4 = {e3, e5, e6}: x3 + x5 + x6 = 8 x1 = 4 8-MC candidate 8-MC? A duplicate?

3 � x3 � 4 2 � x5 � 3 2 � x6 � 3 x2 = 3
x4 = 1

3 2 3 (4, 3, 3, 1, 2, 3) Yes No
3 3 2 (4, 3, 3, 1, 3, 2) Yes No
4 2 2 (4, 3, 4, 1, 2, 2) Yes No

U2: C1 = {e1, e2, e3}: x1 + x2 + x3 = 8 x4 = 1 8-MC candidate 8-MC? A duplicate?

2 � x1 � 4 1 � x2 � 3 3 � x3 � 4 x5 = 3
x6 = 3

2 2 4 (2, 2, 4, 1, 3, 3) Yes No
2 3 3 (2, 3, 3, 1, 3, 3) Yes No
3 1 4 (3, 1, 4, 1, 3, 3) Yes No
3 2 3 (3, 2, 3, 1, 3, 3) Yes No
4 1 3 (4, 1, 3, 1, 3, 3) Yes No

U2: C3 = {e2, e3, e4, e5}: x2 + x3 + x4 + x5 = 8 x1 = 4 8-MC candidate 8-MC? A duplicate?

1 � x2 � 3 3 � x3 � 4 0 � x4 � 1 2 � x5 � 3 x6 = 3

1 3 1 3 (4, 1, 3, 1, 3, 3) Yes Yes
1 4 0 3 (4, 1, 4, 0, 3, 3) Yes No
1 4 1 2 (4, 1, 4, 1, 2, 3) Yes No
2 3 0 3 (4, 2, 3, 0, 3, 3) Yes No
2 3 1 2 (4, 2, 3, 1, 2, 3) No –
2 4 0 2 (4, 2, 4, 0, 2, 3) Yes No
3 3 0 2 (4, 3, 3, 0, 2, 3) No –

U3: C2 = {e1, e3, e4, e6}: x1 + x3 + x4 + x6 = 8 x2 = 3 8-MC candidate 8-MC? A duplicate?

2 � x1 � 4 3 � x3 � 4 0 � x4 � 1 2 � x6 � 3 x5 = 3

2 3 0 3 (2, 3, 3, 0, 3, 3) No –
2 3 1 2 (2, 3, 3, 1, 3, 2) No –
2 4 0 2 (2, 3, 4, 0, 3, 2) Yes No
3 3 0 2 (3, 3, 3, 0, 3, 2) No –



Y.-F. Niu et al. / Transportation Research Part E 100 (2017) 75–97 89
(1) The number of d-MC candidates generated by the proposed algorithm is equal to that generated by the algorithms of
Yan and Qian (2007), and Forghani-elahabad and Mahdavi-Amiri (2014), but is smaller than or equal to that generated
by the algorithms of Lin (2002) and Yeh et al. (2015). In view of the fact that the concept of lower capacity bound is
also used by Yan and Qian, and Forghani-elahabad and Mahdavi-Amiri, but is not employed by Lin, and Yeh et al., it
can be concluded that the usage of lower capacity bound tends to reduce the number of d-MC candidates. This result
well explains why there is a need to develop efficient methods for finding lower capacity bounds of arcs. Moreover, the
difference between the algorithms with and without the use of lower capacity bound will become more prominent as
the demand d grows.

(2) Note that Tnew1/Tnew2 represents the relative efficiency of Theorem 5 and theorem 6 in detecting duplicate d-MCs, and
thus Theorem 5 appears to be more efficient than Theorem 6, and is more applicable to detecting duplicate d-MCs.

(3) As expected, the suggested algorithm, regardless of which judging criterion (i.e. Theorem 5 or Theorem 6) is used,
always outperforms the existing algorithms in solving all d-MCs (d = 5, 7, 9, 11) of the benchmark networks. This result
is totally consistent with the theoretical analysis presented in Section 3.3.

(4) The suggested algorithm shows a huge advantage over the algorithms of Lin (2002), Yan and Qian (2007), Forghani-
elahabad and Mahdavi-Amiri (2014) which employ the comparison method to detect duplicate d-MCs. To be worthy
of attention, while the number of d-MC candidates generated by the suggested algorithm is identical with that gen-
erated by Yan and Qian, Forghani-elahabad and Mahdavi-Amiri, the suggested algorithm is significantly more efficient
than the methods of Yan and Qian, and Forghani-elahabad and Mahdavi-Amiri. This result is understandable in view of
the superiority of the two judging criteria over the comparison method in detecting duplicate d-MCs. To identify a
duplicate d-MC, the comparison method needs to inefficiently compare it with all of the other d-MCs whose number
is usually enormous. In contrast, the proposed judging criteria really find out the fundamental reason for yielding
duplicate d-MCs. Specifically, the judging criteria reveal that only the d-MCs derived from MCs with identical capacity
need to be checked, which largely in part enhances the efficiency of identifying duplicates, and that either the unsat-
urated components or the saturated components in d-MCs can be used to determine duplicates, which is entirely dif-
ferent from the comparison method.
Fig. 7. Benchmark networks (Soh and Rai, 1993; Ramirez-Marquez and Coit, 2005b).



Table 5
The number of d-MC candidates generated by different algorithms.

Net ID m n p d No. of d-MC candidates

rnew = rYQ = rFM rL = rYBH

1 21 10 58 5 8930 8930
7 10,265 18,915
9 10,561 27,663
11 2118 30,684

2 21 12 111 5 27,063 27,063
7 58,509 59,883
9 66,144 81,321
11 27,014 70,644

3 23 13 140 5 39,621 39,621
7 93,801 107,403
9 109,578 192,260
11 18,391 238,944

Note: rnew, rL, rYQ, rFM, and rYBH are the number of d-MC candidates generated by the proposed algorithm, Lin’s algorithm (2002), Yan and Qian’s algorithm
(2007), Forghani-elahabad and Mahdavi-Amiri’s algorithm (2014), and the algorithm of Yeh et al. (2015), respectively.

Table 6
The computational time of different algorithms.

Net ID m n p d-MC Computational time (in CPU second)

Tnew1 Tnew2 TL TYQ TFM TYBH

1 21 10 58 5-MC 4.258 5.345 83.255 83.289 18.604 5.604
7-MC 4.293 5.714 206.328 85.775 21.495 7.247
9-MC 3.166 4.106 198.224 46.498 16.299 6.765
11-MC 0.655 0.868 64.405 1.802 3.335 5.401

2 21 12 111 5-MC 16.753 29.337 813.263 813.285 212.359 31.051
7-MC 24.949 40.754 2204.765 2054.746 340.908 42.543
9-MC 19.928 28.021 1815.567 1415.052 189.528 31.332
11-MC 5.925 6.908 422.149 116.938 43.764 14.349

3 23 13 140 5-MC 28.103 38.882 859.071 859.112 127.815 41.156
7-MC 36.252 45.761 1792.282 1310.053 203.868 49.341
9-MC 27.652 29.673 1073.176 525.361 193.595 51.689
11-MC 3.931 4.165 237.842 12.404 32.188 69.302

Note: Tnew1, and Tnew2 are the running times of the suggested algorithm using Theorem 8, and Theorem 9, respectively, to detect and remove duplicate d-
MCs; TL, TYQ, TFM, and TYBH are the running times of Lin’s algorithm (2002), Yan and Qian’s algorithm (2007), Forghani-elahabad and Mahdavi-Amiri’s
algorithm (2014), and the algorithm of Yeh et al. (2015), respectively.

Table 7
The relative performance of different algorithms.

Net ID m n p d-MC Relative performance

Tnew1/Tnew2 Tnew2/TL Tnew2/TYQ Tnew2/TFM Tnew2/TYBH

1 21 10 58 5-MC 0.797 0.064 0.064 0.287 0.954
7-MC 0.751 0.028 0.067 0.266 0.789
9-MC 0.771 0.021 0.088 0.252 0.607
11-MC 0.755 0.014 0.482 0.260 0.161

2 21 12 111 5-MC 0.571 0.036 0.036 0.138 0.945
7-MC 0.612 0.019 0.020 0.120 0.958
9-MC 0.711 0.015 0.020 0.148 0.894
11-MC 0.858 0.016 0.059 0.158 0.481

3 23 13 140 5-MC 0.723 0.045 0.045 0.304 0.945
7-MC 0.792 0.026 0.035 0.225 0.927
9-MC 0.932 0.028 0.057 0.153 0.574
11-MC 0.944 0.018 0.336 0.129 0.060

Note: Tnew1, and Tnew2 are the running times of the suggested algorithm using Theorem 8, and Theorem 9, respectively, to detect and remove duplicate d-
MCs; TL, TYQ, TFM, and TYBH are the running times of Lin’s algorithm (2002), Yan and Qian’s algorithm (2007), Forghani-elahabad and Mahdavi-Amiri’s
algorithm (2014), and the algorithm of Yeh et al. (2015), respectively.
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In summary, the developed technique for finding lower capacity bounds is beneficial to solving d-MCs, and the two judg-
ing criteria outperforms the traditional comparison method with regard to detecting duplicate d-MCs. What is more, the
experimental results firmly support the superiority of the suggested algorithm over the existing algorithms.
5. A case study of LCD monitor delivery

Reliability evaluated during the operation phase of complex technological networks is a key indicator to measure the
level of service of the networks. Furthermore, this information can be deemed as a performance criterion to figure out
the optimal scheme for network improvement (Kuo and Zuo, 2003; Ramirez-Marquez and Coit, 2005a). As an NP-hard prob-
lem, reliability evaluation has long been recognized to be a difficult and challenging task. Developing efficient algorithms for
reliability analysis contributes to the quick and accurate demonstration of network performance, and thus is a popular topic
to both researchers and practitioners. We have proposed a new d-MC method to evaluate the reliability of a stochastic dis-
tribution network, and its performance advantages over the existing methods have already been proved through both the-
oretical and numerical results. In this section, a practical distribution network, as presented in Fig. 8, is utilized to further
illustrate the application of the proposed algorithm.

5.1. Reliability evaluation of an LCD monitor distribution network between China and France

A Chinese manufacturer owning a factory located at Shenzhen city in China produces LCD monitor commodities. LCD
monitors are usually utilized in consumer electronics industry. Owing to the excellent quality and price advantage of prod-
ucts, the manufacturer has not only been one of the chief LCD monitor providers for Chinese consumer electronics compa-
nies, but also been recognized as the premium supplier by many international consumer electronics enterprises for years.
One of its customers is a famous consumer electronics company in France. When confirming an order from the company
in France, the manufacturer is responsible for the accurate delivery of LCD monitors. Fig. 8 illustrates the LCD monitor dis-
tribution network between China and France, in which the LCD monitor commodity can pass through several transfer cen-
ters in different countries.

The manufacturer has gotten an order from the company in France to deliver 1000 pieces of 42 in. LCD monitors. The
dimension of each 42 in. LCD monitor is 105.1 � 73.89 � 29.1 (unit: cm3). During delivery by either ship or truck, the LCD
monitors are typically loaded onto TEU (twenty-feet equivalent unit). The size of TEU is 589.8 � 235.2 � 238.5 (unit:
cm3), and can load approximately 146 pieces of 42 in. LCD monitors. Each carrier along routes has multiple available capac-
ities, such as 0, 1, . . . , 5 TEU with the probability distribution derived from the carrier’s database. The capacity data of carriers
along routes are shown in Table 8. For example, Pr(x1 = 2) = 0.029 implies the probability that the carrier on route e1 exactly
provides 2 TEU per unit of period is 0.029. And, the probability that the carrier on route e1 can provide more than or equal to
2 TEU per unit of period is 0.974 because Pr(x1 = 2) + Pr(x1 = 3) = 0.974.

Since one TEU can load approximately 146 pieces of 42 in. LCD monitors, the capacity of the distribution network should
be more than or equal to 7 TEU in order to load 1000 pieces of 42 in. LCD monitors (i.e. demand level is 7). Therefore, if the
manager would like to assess the capability of the network to ensure the delivery of required quantity of LCD monitors, the
performance index R7 can be evaluated in terms of 6-MCs, i.e. d = 6. There are 20 MCs in Fig. 8. By using the proposed algo-
Fig. 8. An LCD monitor distribution network between China and France.
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rithm, a total number of 104 6-MCs are found. Based on all 6-MCs and the RSD method shown in Eq. (1), the performance
index R7 = 0.778660 is obtained. As a result, the probability that the distribution network in Fig. 8 can successfully deliver 7
TEU of LCD monitor commodities from China to France is 0.778660. Undoubtedly, this value gives the manager valuable
information on the capability of the distribution network to accomplish the delivery of required quantity of LCD monitor
commodities, and thus can be regarded as a decision criterion. For example, if the probability 0.778660 is below the thresh-
old set by the manager, it means that the performance of the distribution network is unsatisfactory, and thereby it is nec-
essary to improve the network. Otherwise, the performance of the distribution network is desirable.

For comparison, network reliabilities at different demand levels are also computed, and the results are summarized in
Table 9. As expected, network reliability decreases as the demand level increases. Furthermore, the data of the last row in
Table 9 reveals that the reliability difference between two successive demand levels increases as the demand level increases.
When d ranges from 1 to 5, the reliability difference between two successive demand levels (i.e. Rd+1 � Rd+2) is not notable,
but it becomes prominent from d = 5 to d = 7. Therefore, d = 5 (corresponds to the reliability R6) is a critical value above
which the network reliability sharply decreases.

5.2. Optimal scheme for improving the LCD monitor distribution network

The manager pays close attention to the accurate delivery of LCD monitor commodities. Given that the reliability
0.778660 is below the manager’s expectation, and the manager intends to improve the current distribution network by add-
ing new routes (arcs) to it. As a result, the manager needs to determine which routes are the best for network improvement.
In addition, because of some objective conditions, only several routes are specified to be the candidates for network improve-
ment. That is, the candidate routes are limited to China to India, Vietnam to Dubai, Dubai to Greece, and Egypt to France, i.e.
four candidate routes, and their capacity data are presented in Table 10. Consequently, the optimal network improvement
scheme is to determine the best from the four candidate routes, such that their addition to the current network results in the
maximal network reliability. To make a comprehensive analysis, three cases are analyzed:

Case 1: One route is added to the existing network.
Case 2: Two routes is added to the existing network.
Case 3: Three routes is added to the existing network.

The reliability of the expanded network is calculated using the proposed algorithm, and the results under different selec-
tions for each case are presented in Table 11 by which we state the following observations:

(1) China to India is the best for network improvement if the manager considers to add only one route to the current net-
work. Similarly, China to India and Egypt to France (China to India, Dubai to Greece and Egypt to France) are the opti-
mal routes for network improvement when the manager plans to add two (three) routes to the current network.

(2) If the manager hopes that the reliability of the expanded network marginally exceeds 0.95, the best choice is adding
the two routes China to India and Egypt to France to the current network.

(3) It is noteworthy that the route China to India is always involved in the optimal scheme in every case, thus the manager
should give top priority to the route China to India whenever considering to improve the existing network.

(4) As expected, the reliability of the expanded network under the optimal scheme increases as the number of added
routes increases.
Table 8
Capacity data of routes (arcs) in Fig. 8.

Route Available capacity (unit: TEU)

0 1 2 3 4 5

Probability

e1 0.008 0.018 0.029 0.945 – –
e2 0.007 0.009 0.016 0.023 0.032 0.913
e3 0.005 0.021 0.023 0.951 – –
e4 0.006 0.019 0.026 0.949 – –
e5 0.011 0.018 0.025 0.946 – –
e6 0.015 0.026 0.044 0.915 – –
e7 0.007 0.019 0.031 0.042 0.901 –
e8 0.006 0.014 0.023 0.035 0.922 –
e9 0.011 0.053 0.936 – – –
e10 0.008 0.013 0.026 0.037 0.916 –
e11 0.012 0.056 0.932 – – –
e12 0.006 0.019 0.023 0.031 0.921 –
e13 0.007 0.012 0.019 0.023 0.037 0.902



Table 9
Network reliabilities at different demand levels.

d 1 2 3 4 5 6 7

No. of d-MCs 64 140 203 204 140 73 34
Rd+1 0.999000 0.996841 0.985919 0.962932 0.902387 0.778660 0.610428
Rd+1 � Rd+2 0.002159 0.010922 0.022987 0.060545 0.123727 0.168232 –

Table 10
Capacity data of the candidate routes.

Candidate route Available capacity (unit: TEU)

0 1 2 3

Probability

China to India 0.005 0.012 0.026 0.957
Vietnam to Dubai 0.002 0.008 0.013 0.977
Dubai to Greece 0.004 0.009 0.011 0.976
Egypt to France 0.003 0.009 0.015 0.973

Table 11
Network reliabilities under different network improvements.

No. of new
routes

The added route(s) Reliability of the improved
network

The difference to the reliability without
network improvement

Remark

1

China to India 0.876436 0.097776 Optimal
Vietnam to Dubai 0.804974 0.026314 –
Dubai to Greece 0.801931 0.023271 –
Egypt to France 0.844690 0.066030 –

2

China to India and Vietnam to Dubai 0.884229 0.105569 –
China to India and Dubai to Greece 0.902382 0.123722 –
China to India and Egypt to France 0.950799 0.172139 Optimal
Vietnam to Dubai and Dubai to Greece 0.835693 0.057033 –
Vietnam to Dubai and Egypt to France 0.873018 0.094358 –
Dubai to Greece and Egypt to France 0.862951 0.084291 –

3

China to India, Vietnam to Dubai and
Dubai to Greece

0.917757 0.139097 –

China to India, Vietnam to Dubai and
Egypt to France

0.959055 0.180395 –

China to India, Dubai to Greece and Egypt
to France

0.971245 0.192585 Optimal

Vietnam to Dubai, Dubai to Greece and
Egypt to France

0.898314 0.119654 –

Note: The reliability and difference marked in bold are the maximal reliability and the biggest difference in each case, respectively.
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6. Concluding remarks

With increasing demands for better and more reliable service, the reliability problem has become a major concern in the
design of new networks, and the operation and improvement of existing networks. This paper proposes a d-MC based algo-
rithm to evaluate the reliability of a stochastic distribution network that can be regarded as a typical stochastic-flow network
where each arc has a random capacity and the corresponding operational reliability. To improve the efficiency of solving d-
MCs, a new technique is developed to find lower capacity bounds of arcs which are used to cut down the number of d-MC
candidates. Also, a more effective method based on two judging criteria is presented to overcome the drawbacks of the exist-
ing methods in detecting duplicate d-MCs. The proposed judging criteria are the first to really find out the underlying reason
for the generation of duplicate d-MCs. Both complexity analysis and computational experiments conducted on benchmark
networks indicate that the suggested algorithm outperforms the existing methods. Through a practical distribution network
related to LCD monitor products, this study not only demonstrates the utility of the proposed algorithm but also discusses
the management implications of network reliability. A manager can take network reliability as a decision criterion to deter-
mine the optimal network improvement scheme.

For future research, there is still a great potential for extending the suggested algorithm to more practical applications.
For instance, the cost associated with distribution activity is also a major concern for logistics providers, and thus the prob-
lem of network reliability subject to budget constraint is a practical one worthy of study. Hence, it is meaningful to extend
the proposed algorithm to be applicable to the cost and reliability integrated performance evaluation of a distribution net-
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work. Furthermore, the distribution network discussed in this paper is in fact a single-commodity stochastic-flow network in
which only one type of commodity is transported from the source to the destination. In practice, however, a distribution net-
work usually allows multiple types of commodity to be delivered from the source to the destination simultaneously. Because
different types of commodity may consume the arc capacity differently, it is inappropriate to treat the network capacity as
the maximal sum of the commodity. Therefore, it is worthwhile to study how to modify the suggested algorithm to evaluate
the reliability of multi-commodity stochastic-flow networks, which would enhance applicability of the algorithm.

Acknowledgements

The authors gratefully acknowledge the editor-in-chief, Prof. Jiuh-Biing Sheu, and the anonymous reviewers for their
valuable comments and suggestions that have significantly improved the paper. This work is jointly supported by the
National Basic Research Program of China (Project No. 2012CB725401), the National Natural Science Foundation of China
(Project Nos. 71621001, 71601072, 71601073), the Research Committee of The Hong Kong Polytechnic University (Project
No. 87PV), and the Research Institute for Sustainable Urban Development of The Hong Kong Polytechnic University (Project
Nos. 1-ZVBX and 1-ZVBY).

Appendix A

A.1. The existing results with respect to the d-MC problem

Lemma 2. For a d-MC candidate X, if M(X) = d and there is a path between the source node and the destination node in Rd(V, E, X
+0(ei)) for all ei 2 U(X), then X is a d-MC.
Lemma 3. For a d-MC candidate X with M(X) = d, if |U(X)| = 1, then X is a d-MC.
Lemma 4. For an MC C, if Cap(C) = D, every d-MC candidate derived from C is a d-MC.
Lemma 2 is used to verify whether a d-MC candidate is a d-MC, and Lemmas 3 and 4 describe two special cases in which

the verifications are avoidable. Lemma 3 reveals that there is only one unsaturated component in the d-MC. In Lemma 4, Cap
(C) = D means the capacity of C is minimal among all MCs.

Lemma 5. For a d-MC candidate X, if there exists no d-MC candidate X⁄, such that X � X⁄, then X is a d-MC without duplicates.
Lemma 6. Let Ci and Cj be two distinct MCs and X be a d-MC generated from Ci, if U(X) # Cj, X is also a d-MC generated from Cj, i.
e., X is a duplicate d-MC.

Lammas 5 and 6 are utilized to detect duplicate d-MCs. The well-known comparison method is based on Lemma 5, and
Yeh’s method (2008) relies on Lemma 6. Lemma 5 indicates that each d-MC candidate must be verified by comparing it with
all of the other d-MC candidates. It is a time-consuming task to implement the comparison process due to the exponentially
growing number of d-MC candidates (Yeh, 2008). Lemma 6, as opposed to Lemma 5, provides helpful insight into the fun-
damental reason for the generation of duplicate d-MCs. Unfortunately, Lemma 6 may work incorrectly under certain condi-
tion. Specifically, the usage of Lemma 6 may lead to the loss of non-duplicate d-MCs. Fig. 1 is used as an example to illustrate
this point.

Fig. 1 shows that there are 4 MCs in the network: C1 = {e1, e2, e3}, C2 = {e1, e3, e4, e6}, C3 = {e2, e3, e4, e5}, and C4 = {e3, e5, e6}.

It is easy to check that X = (4, 3, 3, 1, 2, 3) is an 8-MC derived from C4 = {e3, e5, e6}, and U(X) = {e3, e5} # C3. Consequently, (4, 3,

3, 1, 2, 3) is identified by Lemma 6 as a duplicate 8-MC also generated from C3, and it will be removed from the list of 8-MCs.

Actually, however, X = (4, 3, 3, 1, 2, 3) is not an 8-MC (candidate) generated from C3 because
P

e2C3
XðeÞ = X(e2) + X(e3) + X(e4)

+ X(e5) = 9– 8. Hence, the non-duplicate 8-MC (4, 3, 3, 1, 2, 3) is lost due to the malfunction of Lemma 6.

A.2. Several newly obtained results

The following conclusion is directly from the definition of L(ei) (1 � i �m).

Corollary 1. For an arc ei (1 � i �m), if L(ei) exists, then M(X) = d, where X = (W1, W2, . . . , Wi�1, L(ei), Wi+1, . . . , Wm).
The basic requirement for a capacity vector X to be a d-MC is the satisfaction of the flow demand d, thus the following

conclusion is at hand.

Corollary 2. For a d-MC candidate X = (X(e1), X(e2), . . . , X(em)) derived from MC C, if X is a d-MC, then X(ei) � L(ei) when L(ei)
exists for all ei 2 C.
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Proof. By the definition of lower capacity bound, we haveM(X) < d if X(ei) < L(ei) for ei 2 C, which is contrary to the definition
of d-MC. Hence, the conclusion holds true.h

Grounded on Lemma 3 and Corollary 1, it is trivial to obtain the following conclusion.

Corollary 3. For an arc ei (1 � i � m), if L(ei) exists, then X = (W1, W2, . . . , Wi�1, L(ei), Wi+1, . . . , Wm) is a d-MC.
Corollary 4. If X = (X(e1), X(e2), . . . , X(em)) is a d-MC generated from MC C, then
X
e2E

XðeÞ ¼ dþ
X
e2E

WðeÞ �
X
e2C

WðeÞ:
Proof. By Lemma 1,
X
e2E

XðeÞ ¼
X
e2C

XðeÞ þ
X
eRC

WðeÞ

¼ dþ
X
eRC

WðeÞ

¼ dþ
X
e2E

WðeÞ �
X
e2C

WðeÞ: �
Corollary 5. If X = (X(e1), X(e2), . . . , X(em)) is a d-MC generated from MC C, then U(X) # C.
Proof. It is directly from Eq. (4) in Lemma 1. h
Corollaries 4 and 5 point out the basic properties which a d-MC should satisfy.

A.3. Nomenclature
Demand
level d
0 � d < D, a non-negative integer-valued flow demand from the source to the destination
Cut
 a cut is a subset of E such that there exists no path from the source node to the destination node after
elimination of all its elements from G(V, E, W)
Minimal cut
 a cut such that none of its proper subsets is a cut

d-MC
 a network capacity vector X = (X(e1), X(e2), . . . , X(em)) is a d-MC if and only if M(X) = d, and M(X+0(ei)) > d

for each ei 2 U(X)

Y � X
 (Y1, Y2, . . . , Ym) � (X1, X2, . . . , Xm) with Yi � Xi for i = 1, 2, . . . , m

Y > X
 (Y1, Y2, . . . , Ym) > (X1, X2, . . . , Xm) with Yi � Xi for i = 1, 2, . . . , m, and Yi > Xi for at least one i
A.4. Notations
G(V, E, W)
 a stochastic-flow network with the set of nodes V = {1, 2, . . . , n}, where 1 is the source node and n is the
destination node, the set of arcs E = {e1, e2, . . . , em}, andW = (W1,W2, . . . ,Wi), whereWi =W(ei) denotes the
max-capacity of ei for 1 � i �m
G(V, E, X)
 the network corresponds to G(V, E, W) except that W is replaced by X

Rd(V, E, X)
 the corresponding residual network to G(V, E, X) after sending d units of flow from source node 1 to

destination node n

e
 an arc

ei
 the ith arc in E

m, n
 the number of arcs, and the number of nodes

X(ei)
 the current capacity of arc ei representing the amount of flow allowed to be sent through ei

L(ei)
 lower capacity bound of arc ei in d-MCs

E⁄
 E⁄ = {ei|L(ei) exists} which is a subset of E

X
 a network capacity vector X = (X(e1), X(e2), . . . , X(em))

C
 a minimal cut

Ci
 the ith minimal cut
(continued on next page)
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Cap(C)
 the capacity of minimal cut C, i.e., Cap(C) =
P

e2CWðeÞ

M(X)
 the max-flow of the network under X

U(X)
 U(X) = {ei|X(ei) <W(ei)}

W(0i)
 W(0i)= (W1, W2, . . . , Wi-1, 0, Wi+1, . . . , Wm), capacity is 0 for ei and the largest for others

0(ei)
 0(ei) = (0, 0, . . . , 0, 1, 0, . . . , 0), i.e. capacity is 1 for ei and zero for others

d
 demand level for the network

D
 M(W), the max-flow of the network under W

p, r
 the number of MCs in the network, and the number of d-MC candidates obtained from an MC, respectively

Rd+1
 reliability at demand level d+1

|�|
 the number of elements of �, e.g. |V| is the number of nodes in V
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