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In this paper, a modified macroscopic traffic flow model is presented. The term of the
density-dependent relaxation time is introduced here. The relation between the relax-

ation time and the density in traffic flow is presented quantitatively. Besides, a factor

R depicting varied properties of traffic flow in different traffic states is also introduced
in the formulation of the model. Furthermore, the evolvement law of traffic flow with

distinctly initial density distribution and boundary perturbations is emphasized.
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1. Introduction

With the rapid development of road traffic, tremendous problems (e.g. conges-

tion,1–5 traffic bottlenecks,6–10 volatile organic compounds emissions11–16) have

been brought out. In order to well illustrate the real traffic, numerous models have

been put forward within several decades. Generally speaking, mainstream models

can be divided into three kinds (e.g. macroscopic models,10 microscopic ones17–19

and mesoscopic ones20). Several outstanding models have been presented. For in-

stance, LWR model21 is one of the most famous models in modeling traffic flow in

§,¶,‖Corresponding authors.
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the macroscopic view. Open boundary conditions and the continuity equation were

introduced to get the density function. Besides, motivated by LWR, PW model22

was proposed, where dynamic equations were first introduced to simulate the real

traffic. Moreover, KK model23 developed the macroscopic one, where the speed–

density function composed by the free velocity and the jam density was considered.

Furthermore, Tang focused on tremendous microscopic traffic flow models such

as considering the traffic interruption probability,24 the micro driving behavior,25

the effect of signal lights on the fuel consumption,26 MVFS,27 NVFS28 in the car-

following model and so on. Finally, Xiao29–34 and Wang35–39 applied traffic flow

models into the mesoscopic view.

The evolvement of car-following models illustrating the real traffic is one of

the most important issues in the research of traffic flow. Pipes first raised the

car-following model considering the impact of headway on drivers’ sensitivities.40

Since then, a series of modifications were made under the enlightening research. Na-

gatani promoted the model by studying the phase transition of traffic flow among

the freely-moving phase, the coexisting one and the uniform-congested one.41 Af-

terwards, Jiang proposed the velocity gradient model.42 The model took it into

consideration that when the velocity of the previous vehicle was high, the instanta-

neous headway could be shorter than the safe headway. On the basis of the former

studies, Bando43 presented OV model by introducing optimal velocity that depends

on the following distance of the preceding vehicle.

However, few models concentrate on the effect of traffic states on traffic flow.

Treiber proposed GKT model44 in order to study traffic flow on different streets

that are homogeneous inside. Jiang45 carried out car-following simulations on a

circle road and pointed out that car-following process would cause fluctuations

in spacing. Nevertheless, varied traffic states and corresponding impacts were not

taken into account in their work. Recently, Tang46 raised a macroscopic traffic flow

model accounting for real-time traffic state. The influence of traffic states on traf-

fic flow was calculated. The relaxation time remained constant, however, in the

real world, it does have connections with the density in traffic flow. Under dif-

ferent circumstances of traffic states, different drivers will have varied reactions.

Generally, the higher the density is, the shorter the relaxation time becomes. Mo-

tivated by this fact, this paper not only considers the effect of traffic states on

traffic flow, but also treats the relaxation time as a density-dependent variable.

Besides, the impact of the relaxation time on the evolvement of traffic flow is

addressed.

The organization of the paper is given as follows. In Sec. 2, a modified macro-

scopic traffic flow model is introduced to illustrate the traffic flow in an open-

boundary road section. Besides, experiments about the traffic state factor R are

performed in Sec. 3. Moreover, the evolvement of traffic flow is emphasized with

the consideration of varied initial global density ρ0. Furthermore, effects of charac-

teristic parameters (e.g. the density ρ, the velocity v, the flow J and deviations of

velocities vD) are calculated. All in all, conclusions are summarized in Sec. 4.

1750291-2

M
od

. P
hy

s.
 L

et
t. 

B
 2

01
7.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

E
IJ

IN
G

 J
IA

O
T

O
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/2
0/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



November 1, 2017 17:15 MPLB S0217984917502918 page 3

Evolvement law of a macroscopic traffic model

Fig. 1. Parameters denoted in the proposed model.

2. Model

In this section, a macroscopic traffic model accounting for the density-dependent

relaxation time is proposed. Different with Tang’s work,46 control equations of the

system can be expressed as

ρt + (ρv)x = 0,

vt + vvx =
vr,e(ρ) − v

τ
+ cr,0vx + ηr(R(x+ ∆x) −R(x))ar,

vr,e(ρ(x, t)) = ve(ρ(x, t)) + ηr(R(x+ ∆x) −R(x))vr,

ve = vf

((
1 + exp

(
ρ/ρmax − 0.25

0.06

))−1

− 3.72 × 10−6

)
,

τ = 150 exp

(
1

ρ− ρc

)
.

(1)

Here, tremendous parameters are introduced in the model formulation, which can be

found in Fig. 1. Besides, ρmax represents the congestion density which is the critical

point of phase transitions. Moreover, ρc represents the critical point where the value

of the relaxation time becomes zero. Furthermore, both of these parameters are of

relatively high density. However, the value of ρc is slightly higher than that of ρmax,

since the relaxation time corresponding to the congestion state is not always zero.

The first expression in Eq. (1) is the continuity equation. Here, ηr is a parameter

reflecting the influence of traffic state on traffic flow. It is an empirical parameter

which depends on density of traffic flow. According to the numerical results, ηr has

no effect on traffic flow when density is very low or high. It works when the density

is moderate.
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The second one corresponds to non-equilibrium properties of traffic flow. Be-

sides, in order to avoid the wrong-way travel problem, the term cr,0vx is intro-

duced, which can reflect realistic driving behaviors. In details, cr,0vx considers the

acceleration effect caused by the relative speed. Meanwhile, it can eliminate the

phenomenon of backward movement. Moreover, similar to Ref. 46, the parameter

R(x) is introduced to depict traffic states of real traffic, which depends on densities

in traffic flow, the system size and road qualities (e.g. the roughness, pavement ma-

terials, etc.). Furthermore, the value of R(x) is in the interval [−1, 1]. Here, R(x)

works with ηr and the acceleration adjustment term ar to influence the variation of

velocity. Therefore, R(x) has a relative value. Theoretically, its value can be set in

any range. However, in order to illustrate the traffic state in a simple way, we choose

the interval [−1, 1]. Then, the value of ηr and ar can be determined. The relation-

ship between the specific value of R(x) and the traffic state can be summarized as

follows: 
light R(x) > 0 ,

medium R(x) = 0 ,

heavy R(x) < 0 .

(2)

In details, R(x) > 0 means that the traffic is light, while R(x) < 0 corresponds to

the heavy traffic. Besides, R(x) = 0 reflects the medium case.

However, the third expression in Eq. (1) depicts the equilibrium velocity un-

der specific road conditions. The equilibrium speed vr,e under road conditions

is modified with the traffic state factor R(x), which considers that the acceler-

ation is caused by relative conditions of a section. Besides, in fact, the equilib-

rium speed with road condition is derived under the circumstances that traffic

flow has reached the equilibrium state. Thus, the equation vt = vx = 0 is satis-

fied. Moreover, by means of substituting it into the second formula of Eq. (1), we

can get vr,e(ρ(x, t)) = ve(ρ(x, t)) + ηr(R(x+ ∆x, t) −R(x, t))arτ . Thus, by setting

vr = arτ as the speed adjustment term, we can get the third formula in Eq. (1).

Moreover, similar to Ref. 46, the relationship between the equilibrium speed ve
and the free flow speed vf can be expressed as the fourth one in Eq. (1). Actually,

the forth expression is used to illustrate the equilibrium speed ve. It was first derived

in Ref. 47. Then, Kerner applied it to his macroscopic traffic flow model on the basis

of Navier–Stokes equation.23 Besides, coefficients in the fourth expression in Eq. (1)

were obtained and modified by the empirical data in order to illustrate the traffic

wave dynamics.

Furthermore, the fifth expression in Eq. (1) is obtained from the following facts.

On one hand, the greater the density is, the shorter the relaxation time becomes.

Because when the headway is short, the velocity is relatively small and the driver’s

sensitivity is relatively high, which leads vehicles to sooner recovering to the equilib-

rium positions, respectively, after adding a slight disturbance. On the other hand,

the lower the density is, the longer the relaxation time becomes. Because the fol-

lowing driver needs longer time to react when the minor disturbance causes the
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Evolvement law of a macroscopic traffic model

Fig. 2. The relationship between the relaxation time and the density.

previous driver’s speed to change and the headway is long. Besides, a longer

acceleration or deceleration time is required when the speed is higher. Here, ρc rep-

resents the critical density of traffic jam. Moreover, the relaxation time obeys the

fifth expression in Eq. (1), when ρ < ρc is satisfied. Furthermore, the relaxation time

becomes 0, when ρ > ρc is satisfied. Finally, Fig. 2 shows the relationship between τ

and ρ.

3. Numerical Simulation Experiments

In this part, we study the evolution of traffic flow on an open-boundary section

with perturbations. Two cases are presented here. The first one is introducing a

cosine function to denote R(x). The other one is using pseudo-random sequences

to illustrate R(x). First of all, the difference method is applied into the analysis of

Eq. (1). The following equation can be obtained:

ρji = ρj−1
i +

∆t

∆x
ρj−1
i (vj−1

i+1 − vj−1
i ) +

∆t

∆x
vj−1
i (ρj−1

i − ρj−1
i−1 ) . (3)

In details, Eq. (3) is derived from the first expression in Eq. (1). According to

Ref. 42, the upwind difference scheme can well describe the traffic wave. Thus, the

upwind difference scheme is applied to Eq. (1), which leads to equation 1
∆t (ρ

j
i −

ρj−1
i ) = 1

∆x [ρj−1
i (vj−1

i − vj−1
i+1 ) + vj−1

i (ρj−1
i−1 − ρj−1

i )]. Thus, by means of rewriting

the formula into the recursive form, we can obtain Eq. (3). In the process of the

discretization, the non-equilibrium equation of velocity should be treated differently

under various circumstances.

On one hand, when the traffic is heavy (namely, vj−1
i < cr,0), the variation of

velocity is mainly affected by the velocity difference between the ith vehicle and

the previous one (namely, the (i + 1)th vehicle). Thus, the discrete format of the
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non-equilibrium equation of velocity can be written as

vji = vj−1
i +

∆t

∆x
(cr,0 − vj−1

i )(vj−1
i+1 − vj−1

i ) +
∆t

150
e
− 1

ρ
j
i
−ρc (vr,e(ρ

j−1
i ) − vj−1

i )

+ ∆tηr(R(i+ 1, j − 1) −R(i, j − 1))ar . (4)

On the other hand, when the traffic is light (namely, vj−1
i > cr,0), the variation

of velocity is mainly affected by the difference of velocity between the ith vehicle

and the following one (namely, the (i− 1)th vehicle). Similarly, the discrete format

can be obtained as follows:

vji = vj−1
i +

∆t

∆x
(cr,0 − vj−1

i )(vj−1
i − vj−1

i−1 ) +
∆t

150
e
− 1

ρ
j
i
−ρc (vr,e(ρ

j−1
i ) − vj−1

i )

+ ∆tηr(R(i+ 1, j − 1) −R(i, j − 1))ar . (5)

Here, i, j, ∆x, ∆t represent the space index, the time index, the space-step length

and the time-step length, respectively.

Fig. 3. The evolvement of traffic flow under the condition that R(x) = cos(πx
15

) is satisfied. The
simulation time t satisfies t = 50 s. (a) the density in the section; (b) the velocity; (c) the current;

(d) the deviation of the velocity. Here, the low density case is considered. Besides, ρ0 = 0.005.
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For simplicity, we assume the initial density ρ0 as a fixed value and the initial

velocity of traffic flow as the equilibrium speed vr,e(ρ). Besides, a minor perturbation

ρbd(0, t) is introduced as the left-boundary condition, which can be expressed as

follows:

ρbd(0, t) = ρ0

[
1 + 0.02 sin

(
πt

10

)]
. (6)

Moreover, specific values of corresponding parameters are set as follows:

cr,0 =


8, R(x+ ∆x) −R(x) > 0 ,

5, R(x+ ∆x) −R(x) = 0 ,

4, R(x+ ∆x) −R(x) < 0 ,

(7)

ηr =

{
0, if ρ > 0.05 or ρ < 0.01 ,

0.5, otherwise,
(8)

Fig. 4. The evolvement of traffic flow under the condition that pseudo-random sequences in the

interval [−1, 1] are chosen as R(x). The simulation time t satisfies t = 50 s. (a) the density in the
section; (b) the velocity; (c) the current; (d) the deviation of the velocity. Here, the low density

case is considered. Besides, ρ0 = 0.005.
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ar =

{
0, if ρ > 0.05 or ρ < 0.01 ,

0.5, otherwise,
(9)

and

vr =

{
0, if ρ > 0.05 or ρ < 0.01 ,

2, otherwise.
(10)

Furthermore, vf = 10 m/s, ρc = 0.5 veh/m, ∆x = 100 m, ∆t = 1 s and the number

of space steps N = 100 are calculated. Thus, the system size satisfies L = 10 km.

Then, four situations are investigated in this part. First, the low density sit-

uation is calculated, where ρ0 = 0.005 veh/m is satisfied. Besides, two cases are

considered. On one hand, results of R(x) = cos(πx15 ) are presented in Fig. 3. The

evolvement of the density, velocity, flow and deviation of velocities is displayed in

Figs. 3(a)–3(d), respectively. On the other hand, pseudo-random sequences in the

Fig. 5. The evolvement of traffic flow under the condition that R(x) = cos(πx
15

) is satisfied. The

simulation time t satisfies t = 50 s. (a) the density in the section; (b) the velocity; (c) the current;
(d) the deviation of the velocity. Here, the relatively low density case is considered. Besides,

ρ0 = 0.01.
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interval [−1, 1] are chosen as the format of R(x). Similar results are displayed in

Fig. 4. From Figs. 3 and 4, it can be found that traffic flow can soon be stable,

when the density in the system is low. Besides, when the balance is reached, the

density, flow and deviation of the velocity are small, while the velocity is quite high.

Such phenomenon indicates that the traffic state factor R(x) has little impact on

the evolution of traffic flow when the density is very low. In another view, the low

density leads to the huge headway. Thus, minor perturbations have little impact

on the following vehicle and will soon dissipate. Besides, although two different

formats of R(x) are applied in this situation, similar results can be obtained. Thus,

the initial density dominates the evolvement of traffic flow in this case.

Second, the relatively low density situation is calculated, where ρ0 = 0.01 veh/m

is satisfied. Similar to the above situation, R(x) = cos(πx15 ) and pseudo-random

sequences are also applied here. Figures 5 and 6 display the corresponding results.

From Fig. 5, it can be found that there are four states of densities, namely, the

Fig. 6. The evolvement of traffic flow under the condition that pseudo-random sequences in the

interval [−1, 1] are chosen as R(x). The simulation time t satisfies t = 50 s. (a) the density in the
section; (b) the velocity; (c) the current; (d) the deviation of the velocity. Here, the relatively low

density case is considered. Besides, ρ0 = 0.01.
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increasing part, the shrinking one, the flat one and the second shrinking one. It can

be explained by real traffic. In details, when vehicles encounter heavy traffic, the

traffic capacity shrinks and increasing densities emerge. Then, velocities of vehicles

tend to be in equilibrium and the headway tends to be unvaried, which contributes

to densities declining and maintaining unchanged then. Afterwards, since the total

number of vehicles is conserved, there will be a state where the density is very low

and the speed is relatively high. From Fig. 6, it can be concluded that the traffic

state factor has a great influence on the evolution of traffic flow in this situation.

In other words, when R(x) is a random digit, the evolvement of the density wave

and the velocity wave is accordingly irregular.

Third, the relatively high density situation is considered, where ρ0 = 0.03 veh/m

is satisfied. Similar to above situations, two formats of R(x) are also applied here.

Figures 7 and 8 show the corresponding results. From Fig. 7, it can be found that

Fig. 7. The evolvement of traffic flow under the condition that R(x) = cos(πx
15

) is satisfied. The

simulation time t satisfies t = 50 s. (a) the density in the section; (b) the velocity; (c) the current;
(d) the deviation of the velocity. Here, the relatively high density case is considered. Besides,

ρ0 = 0.03.
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Fig. 8. The evolvement of traffic flow under the condition that pseudo-random sequences in the

interval [−1, 1] are chosen as R(x). The simulation time t satisfies t = 50 s. (a) the density in the
section; (b) the velocity; (c) the current; (d) the deviation of the velocity. Here, the relatively high

density case is considered. Besides, ρ0 = 0.03.

the flat state of the density disappears. Compared with Fig. 5, Fig. 7 shows that

the flat state gradually shrinks with an increase of the density under the condition

R(x) = cos(πx15 ). Integrated with the reality, the flat state means the achievement of

balanced traffic flow. However, when the density is relatively high, vehicles come to

the next traffic bottleneck before they make it to the equilibrium state. Meanwhile,

similar to Fig. 6, Fig. 8 shows that the traffic state factor also has a great impact on

the evolution of traffic flow in this situation. Similarly, when R(x) is a random digit,

the evolvement of the density wave and the velocity wave is accordingly irregular.

Finally, the high density situation is calculated, where ρ0 = 0.3 veh/m is sat-

isfied. Similar to the above situations, two formats of R(x) are also applied here.

Figures 9 and 10 show the corresponding results. Actually, results obtained in this

situation are similar to those in the low density one. When the balance is reached,

1750291-11

M
od

. P
hy

s.
 L

et
t. 

B
 2

01
7.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

E
IJ

IN
G

 J
IA

O
T

O
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/2
0/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



November 1, 2017 17:15 MPLB S0217984917502918 page 12

Y.-Q. Wang et al.

Fig. 9. The evolvement of traffic flow under the condition that R(x) = cos(πx
15

) is satisfied. The

simulation time t satisfies t = 50 s. (a) the density in the section; (b) the velocity; (c) the current;

(d) the deviation of the velocity. Here, the high density case is considered. Besides, ρ0 = 0.3.

the density is high while both the velocity and the flow are rather low. Similar

to the low density situation, the traffic state factor R(x) has little effect on the

evolution of traffic flow. In another view, the velocity is generally low and the re-

laxation time is short, when the density is high. Besides, comparing Figs. 9 and 10,

it can be concluded that perturbations have little impact on the following vehicle

and they will soon be suppressed. Thus, in the high density situation, the relaxation

time dominates in the evolvement of traffic flow. Here, the deviation of the veloc-

ity of traffic flow represents the difference between the real-time velocity and the

equilibrium velocity. Figures depicting the deviation can reflect whether the traffic

flow has reached the equilibrium and the extent to which the state of traffic flow

deviates from the equilibrium. With the help of (d) in Figs. 3–10, we can draw the

conclusion that perturbations from the left boundary have no impacts on traffic

flow when the density is very low or high, while they work when the density is

moderate.
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Fig. 10. The evolvement of traffic flow under the condition that pseudo-random sequences in the
interval [−1, 1] are chosen as R(x). The simulation time t satisfies t = 50 s. (a) the density in the

section; (b) the velocity; (c) the current; (d) the deviation of the velocity. Here, the high density

case is considered. Besides, ρ0 = 0.3.

4. Conclusion

In this paper, a modified macroscopic traffic flow model coupled with the density-

dependent relaxation time accounting for the traffic state is proposed. The impacts

of the specific road condition factor R(x) on the evolvement of traffic flow are em-

phasized. Detailed illustrations of the transfer and dissipations of the perturbation

in traffic flow are presented. Moreover, numerical simulation experiments of a set-

tled open-boundary section are intensively performed and four different situations

(namely, the low density condition, the relatively low one, the relatively high one

and the high density one) are discussed. Furthermore, applications of the model

into a circular road will be discussed in our intending paper.
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