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Abstract

This work proposes a model considering fairness in the problem of crew scheduling for bus

drivers (CSP-BD) using a hybrid ant-colony optimization (HACO) algorithm to solve it. The

main contributions of this work are the following: (a) a valid approach for cases with a special

cost structure and constraints considering the fairness of working time and idle time; (b) an

improved algorithm incorporating Gamma heuristic function and selecting rules. The rela-

tionships of each cost are examined with ten bus lines collected from the Beijing Public

Transport Holdings (Group) Co., Ltd., one of the largest bus transit companies in the world.

It shows that unfair cost is indirectly related to common cost, fixed cost and extra cost and

also the unfair cost approaches to common and fixed cost when its coefficient is twice of

common cost coefficient. Furthermore, the longest time for the tested bus line with 1108

pieces, 74 blocks is less than 30 minutes. The results indicate that the HACO-based algo-

rithm can be a feasible and efficient optimization technique for CSP-BD, especially with

large scale problems.

Introduction

Overview of CSP-BD model

Research involving public transit problems [1–6] has been done for years. It has been known

for more than 50 years that the crew-scheduling problem (CSP) for bus drivers (CSP-BD) pres-

ents a bus transit company with one of its most important operational-planning problems,

since crew costs usually dominate all other factors [7]. The problem involves assigning vehicle

trips to crews in such a way that each trip is covered by a shift, while guaranteeing that all

other duty functions are feasible and that the total cost of all duties is minimal [8–13]. Thus,

under reasonable constraints, less duties means reducing more cost. Some models [7] consider

the goal of minimizing the total duties under the limitation of total working hours such as 8

hours according to the legislation. While, some [14, 15] refer to the total working time to

spread over for each duty in the limitation of maximum and minimum value. Some models

[16–18] consider the duty cost as a whole including real cost, meal cost and so on, while
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sometimes [19, 20] penalty cost function is added to measure duty working hours to limit

hours in labor agreement rules. Moreover, unfairness function considering different duty

working hours and overtime penalty is referred in some papers [21]. However, the different

idle time may also cause unfairness because more idle time means more rest time, so in this

paper we add the unfairness cost function both considering the total working time and idle

time for each duty, as well as the common cost and extra working hour cost functions.

Overview of CSP-BD algorithm

CSP-BD has attracted the interest of many researchers since the 1960s, and research in this

area has become more active since the 1990s. Most of the methodologies in this context are

based on mathematical programming techniques or on a hybrid approach using heuristics and

Integer Linear Programming (ILP) [22–25]; the success and limitations of these methodologies

have been discussed in Kwan et al. (2000), and Li and Kwan (2003). In the mathematical pro-

gramming-based approach, CSP-BD is formulated as a sub-set of shifts that covers all pieces of

the trip, with the objective of minimizing total costs or the total number of shifts [26]. In recent

years, meta-heuristics have been widely used for searching practical near-optimal solutions to

NP-hard (highly complex) problems. Meta-heuristics offer three main advantages: (a) they

are usually very efficient in searching through very large solution space; (b) they can result in a

feasible solution; (c) each class of meta-heuristics has its own methodical and strategic struc-

ture; for example, genetic algorithms (GA), one of the most important meta-heuristics, have

attracted much attention recently [14, 17, 27, 28]. In addition, effort has also been made in

exploring other meta-heuristics, such as Tabu searches (TS) [19, 29, 30], simulated annealing

[31] and variable neighborhood search [32].

It is worth mentioning that until now, although much research has been conducted using

meta-heuristics little attention has been paid to ant-colony optimization (ACO) for CSP-BD.

Even in the one notable exception, Forsyth and Wren [33], the ACO algorithm for CSP-BD is

unproved, for they gave up attempting to build shifts by choosing a node in each ant move

and, instead, constructed multiple shifts, relying on TRACSII [34]. The work that follows

describes how to filter shifts according to certain rules. Several studies [35–37] used the ACO

algorithm for air and train-crew scheduling. In addition, an ACO-based method that simulates

a real ant colony with positive feedback characteristics was employed in the field of optimiza-

tion to solve NP-hard problems, such as the traveling-salesman problem [38, 39].

The present paper proposes a Hybrid ACO algorithm to solve CSP-BD. First, a fully con-

nected graph is created, attempting to search for the shortest path from the graph. A vertex

represents a relief opportunity, and edges connote pieces of work. Ants move on the graph

according to probabilities determined by the heuristic function and pheromone intensity. This

study presents the Gamma heuristic function and one first-node choosing rule and also con-

siders the fairness of total working time and idle time in our proposed model. The results of

case studies in Beijing show that the proposed HACO performs well and can generate good

quality solutions.

The following sections are organized such that the objective function with fairness of work-

ing time and idle time is described in Section 2, as well as the construction model for CSP-BD.

Thereafter, the detailed design of the HACO is presented in Section 3 for solving the problem.

In Section 4, two experiments are respectively to determine the best parameter combinations

for HACO algorithm and to testify the sensitivity of unfair cost coefficient in the objective

function. In Section 5 ten bus lines are chosen to examine the relationship of the presented

costs in the objective function. Finally, conclusions are drawn in Section 6, followed by recom-

mendations for future research.

Fairness in optimizing bus-crew scheduling process

PLOS ONE | https://doi.org/10.1371/journal.pone.0187623 November 30, 2017 2 / 19

https://doi.org/10.1371/journal.pone.0187623


Crew-scheduling problem for bus drivers (CSP-BD)

The crew-scheduling problem for bus drivers (CSP-BD) involves finding a set of legal shifts or

duties that can cover all trips or vehicle blocks in a particular scheduling horizon. The defini-

tion is presented in the first part of this section.

Definitions

Each trip is a scheduled activity with specific starting and ending times and locations. The fea-

sibility of a solution mainly depends on the whole available connection of several successive

trips in acceptable time.

A vehicle block illustrated in the Fig 1 may be considered a unit of work, which starts and

ends at a relief opportunity (RO), meaning the time and place at which a change of drivers is

possible.

A piece of work denotes a shorter work between two consecutive ROs completed by the

same vehicle.

The idle time is the waiting time or rest time between the arrival time of preceding bus and

the departure time of the following one at each RO.

A driver’s shift (or duty) is constructed by several successive pieces of work (called a spell)

that can be assigned from the driver’s signing on until his/her signing off at the same depot.

For example, shift 1 combines spell 1 with spell 3.

Normally, some constraints restrict crew shifts, such as labor-agreement rules that limit

work hours or the time for a break, and so on. The concept of block, shift and spell is shown in

Fig 1.

Assumptions for CSP-BD

Listed below are the assumptions regarding the crew scheduling problem for bus drivers:

1. The vehicle blocks in the schedule have been utilized as input in the CSP-BD solving

process;

2. The influence of different bus types can be ignored;

3. The actual total working time is allowed to exceed the total expected working time (for

example, 450 minutes) that is limited in a reasonable range;

4. The duration of each RO is fixed and does not lend itself to random adjustment;

Fig 1. A simple illustration of blocks, spells and shifts.

https://doi.org/10.1371/journal.pone.0187623.g001
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5. The time of each spell time is less than the lower bound of total expected working time (for

example, 390 minutes) for an available shift.

Objective function of CSP-BD

The objective of the CSP-BD is to minimize a bus company’s total costs, which include stan-

dard and additional salary payments to drivers, the cost of potentially unfair working time,

and the cost of the average total working time and idle time. The solution is to generate N’

legal shifts from the initial predetermined N shifts and M spells.

Following are the CSP-BD restrictions: (i) the maximum daily working time excluding

overtime is 450 minutes per shift; (ii) there is an upper limit on overtime, which cannot exceed

the maximum daily working time by more than 30 minutes; (iii) every crew is entitled to a

maximum of 30 minutes idle time per trip; (iv) the total working time is the time span between

sign-on and sign-off, consisting of driving time and idle time; (vi) idle time by definition can

only begin the second after sign-on and no later than the last second of the end of the trip; (vii)

for each driver there are fixed cost such as welfare and insurance, distinct from standard costs

and overtime expenses. The modified equations for the crew scheduling problem, based on

existing equations seen from [21], are as follows:

Min
XN

j¼1

F1ðvjÞ þ
XN

j¼1

F2ðvjÞ þ
XN

j¼1

F3ðvjÞ þ N
0

�C ð1Þ

s:t:
XM

i¼1

aijxj � l 8j ¼ 1; 2; ::::;N ð2Þ

N 0 ¼
XN

j¼1

xj 8j ¼ 1; 2; ::::;N ð3Þ

XN

j¼1

aijxj ¼ 1 8i ¼ 1; 2; . . .;M ð4Þ

tidlej ¼
XM

i¼1;i0 ¼1;i6¼i0
tii0 aijai0 jxj 8j ¼ 1; 2; ::::;N ð5Þ

vj ¼
XM

i¼1;i0 ¼1;i6¼i0
tiaijxj þ t

idle
j 8j ¼ 1; 2; ::::;N ð6Þ

F1ðvjÞ ¼
�

b1 � ðvj=60Þ; vj � vmax

b1 � ðvmax=60Þ; else
ð7Þ

F2ðvjÞ ¼
�

b2
� ½ðvj � vmaxÞ=60�; vmax < vj � vmax þ g

0; else
ð8Þ

F3ðvjÞ ¼ b3
� ½ðjvj �

XN

j¼1

vj

N
j þ jtidlej �

XN

j¼1

tidlej

N
jÞ=60� ð9Þ
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aij 2 ð0; 1Þ; 8i ¼ 1; 2; . . .;M; j ¼ 1; 2; ::::;N ð10Þ

xj 2 ð0; 1Þ 8j ¼ 1; 2; ::::;N ð11Þ

F1(vj): Common cost within the maximum constraint time (Yuan);

F2(vj): Extra cost that is the penalty cost for the extra working time (Yuan);

F3(vj): Unfair cost that is the penalty cost for deviating from the average total working time

and total idle time in a shift (Yuan);

N’: The total number of generated shifts in a solution;

C: The fixed cost coefficient, such as welfare and/or insurance for each driver that is set as 70

Yuan;

N’�C: Fixed cost that is the sum cost of all generated shifts;

aij: The variable that is equal to 1 when spell i is selected for shift j, otherwise aij is equal to 0;

xj: The variable which is equal to 1 when shift j is selected otherwise xj is equal to 0;

λ: The minimum number of spells in a shift set as 1 in the following examples;

tidlej : The total idle time in a shift (minute);

tii0 : The connecting time between spell i and i’ ranging from (0,30] minutes that equals 0 when

it is out of that range(minute);

vj: The total working time in a shift (minute) including the sum of spell time and idle time;

ti: The total time of a spell i (minute);

vmax: Maximum constraint working time for the standard fixed cost (Yuan) set as 450 (minute)

in the following examples;

β1: Common cost coefficient equals normal salary per hour (Yuan per hour) set as 15;

γ: The maximum extra time beyond vmax (minute) set as 30 (Yuan);

β2: Extra cost coefficient (Yuan per hour) set as 30 (Yuan) twice of the common cost

coefficient;

β3: Unfair cost coefficient means the penalty cost for deviation from the average total time and

idle time per hour (Yuan per hour);

The object of the Eq (1) is as a function to minimize the total cost, including the common

cost within the maximum constraint time, the extra cost for overtime, the fairness cost for

deviating from the average total working time, and the total idle time in a shift and extra fixed

costs incurred by an increase of one shift. Eqs (2) and (3) respectively stand for the amount of

spells in a shift and the amount of shifts in a solution, and Eq (4) indicates that each spell is

only selected by one shift. Eqs (5) and (6) are respectively the calculation of total idle time and

working time in a shift. Eq (7) is the common cost multiplied by total working time within

its constraints. Eq (8) is the extra cost paid for overtime work when the total working time

exceeds the maximum working time according to regulation. Generally, the extra cost paid per

Fairness in optimizing bus-crew scheduling process
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hour is much higher than the common cost per hour. In this case, the extra cost paid per hour

is twice of the standard salary per hour. Eq (9) is the unfair cost for deviation from the average

level working time and idle time. It reflects consideration for fairness in relation to drivers’

working time and availability of the schedule.

HACO-based algorithm for CSP-BD

The common ACO algorithm was inspired by the foraging behavior of ant colonies, which

find the shortest route between the ants’ nest and a source of food by exchanging information

via pheromone trails left behind by each ant on a trip. Over time, however, the pheromone

trail starts to evaporate, thus reducing its attractive strength. The more time it takes for an ant

to travel across the path and back again, the more time the pheromones along the path have to

evaporate. A short path, by comparison, is marched over more frequently, and thus the phero-

mone density on shorter paths obviously becomes higher than on longer paths. Thus, when

one ant finds a good (i.e., short) path from the colony to the food source, other ants are more

likely to follow that path, and positive feedback eventually leads to all the ants’ following a sin-

gle path.

We note some similarities between the CSP-BD and the traveling salesman problem (TSP)

as a means of further substantiating the case for the algorithm proposed in this paper. In the

well-informed TSP, each node represents a city to be traversed in iteration, and link values are

distances between nodes. Likewise, CSP-BD uses spells as path nodes, and the nodes can be

connected by links according to idle time restrictions and consideration for arrival at or depar-

ture from a depot.

Accordingly, the characteristics of CSP-BP are integral to our proposed hybrid ant-colony

optimization algorithm (HACO) based on Maximum and Minimum Ant System (MMAS).

This section primarily describes the process of designing the HACO-based algorithm for solv-

ing the CSP-BD problem. Naturally, this includes the node-choosing rule in formulating the

probability function, as well as detailed updating of the pheromone-trails rules in MMAS; it is

performed through constructing a selection function and generating shifts rules, both are criti-

cal procedures of the algorithm.

HACO: Node-choosing rule

Prior to examining the process of ants start searching for a route, it is essential that we identify

certain indispensable variables.

T1×M: A Tabu table deposits the nodes that have been visited in a searching route and its condi-

tion at initialization is to empty the table upon the beginning of an ant’s traversing.

CM×M: A correlation matrix reflects the relation between two nodes (spells). In TSP, the values

of the correlation matrix are the distances between two cities. However, in CSP-BD, the val-

ues are recognized as the idle time between two nodes under the given constraints, such as

maximum idle time, arrival or departure depot and maximum working time in a shift. For

example, if the arrival depot of spell i is the same as the departure depot of spell i’, then the

idle time for the two spells and their total working times are less than the maximum restric-

tions, such that the value of Cii0 is equal to the idle time between spell i and spell i’. From

the correlation matrix, each node corresponds to its potential connecting node indicated in

the matrix row.

HM×M: The heuristic matrix shows data results transformed by the heuristic function. Different

forms of the heuristic function are listed below.

Fairness in optimizing bus-crew scheduling process
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PM×M: The pheromone matrix displays the pheromone intensity on the search route. The pro-

cess of initiation is simplified based on the correlation matrix, whereas pheromone intensity

remains at zero on the positions with zero value in the correlation matrix. The matrix

updates after all ants traverse their routes in a cycle.

The next node-choosing rule

In the iterative process of the ants’ choosing the next nodes, transition rules play an important

role until all nodes have been selected from the graph. Transition rules with many equations

and even more parameters stands on the current node to select the next node from the unse-

lected node pool depositing the unvisited nodes in the process of constructing a new shift.

Here, the next node is not only the one that may depart later than the arrival time of current

node but also the one that arrive earlier than the current node. Then the searching range

enlarges compared with the only searching the nodes that depart later.

j ¼

(
arg maxf½tiuðtÞ�

a

u2allowedpit

: ½Ziu�
b

u2allowedci

g q � q0

S else ð12Þ

τiu(t): Pheromone intensity of the trail between node i and node u in the process of tth itera-

tion. Its value is reflected on the pheromone matrix and it increases or decreases according

to the number of ants traversing the trail;

allowedpit: The non-empty node set for unselected node i in the corresponding row or column

of the pheromone matrix in the process of tth iteration;

allowedci : The non-empty node set for unselected node i in the corresponding row or column

of the correlation matrix;

ηiu: The heuristic function presenting the closeness between node i and node u; it is inversely pro-

portional to the idle time tidleiu . Here, if ηiu = 0, that means node umay not exist in allowedci .

From the property of the problem, the larger the idle time, the less closeness that exists

between node i and node u. Gamma-Function (G-F) functions are considered to be the fittest

function seen from Eq (13).

Ziu ¼

(
oðtidleiu Þ

� l1eð� l2Þtidleiu tidleiu > 0

0 else
8u 2 allowedci ; l1 > 0; l2 > 0;o > 0 ð13Þ

α and β define the importance of pheromone intensity τiu(t) versus the heuristic function.

Here, both α and β are non-negative.

q: a random number uniformly distributed from 0 to 1, chosen from the rand function in

MATLAB.

q0: a parameter determining the degree of correlation of exploitation compared with explora-

tion. Exploitation means acquiring an exact number or value through iterative analysis and

calculation, however, exploration is the result of repeated attempts with randomness.

If q� q0, the unique node with the maximum value in Eq (12) is chosen according to

exploitation. On the other hand, the parameter is exploration-oriented when the next node is
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chosen according to S, which is a random variable selected according to the probability

obtained by:

pkijðtÞ ¼

½tijðtÞ�
a
:½Zij�

b

X

u 2 allowedpit
u 2 allowedci

½tiuðtÞ�
a
:½Ziu�

b
j 2 allowedpit; j 2 allowedci

0 otherwise

ð14Þ

8
>>>><

>>>>:

First node-choosing rule

Because of the limitation for total working time, more than one shift is contained in a solution.

When one shift is completed, the next chosen node may have no direct relationship with the

current chosen node. Then, once one shift has been selected, the next problem concerns how

to choose the first node in the next shift. Here, similar rules for choosing the first node for

each shift as the transition rules are proposed.

j0 ¼

arg maxftiuðtÞg
i2unselected kt

u2allowed
p
it

q0 � q0
0

r otherwise

i ¼ 1; 2; . . .; n ð15Þ

8
>>><

>>>:

unselectedkt : The non-empty node pool that has not been visited until now at tth iteration for the

kth ant, q’ is the same meaning as q, and q00 defines the relative importance of exploitation ver-

sus exploration, similar to q0 above mentioned. If q0 � q00, the node chosen is said to be exploi-

tation-oriented; that is, the unselected node with the highest pheromone density at tth iteration

is chosen. In contrast, the exploration defines that the next node is selected randomly from

unselectedk using the rand function in MATLAB. The choosing rules do not contain the heuris-

tic function ηij for the reason that there exists no connecting nodes defining in the correlation

matrix and has less of relationships compared with the prior nodes in the Tabu table.

HACO: Updating the pheromone trail rule in MMAS

The updated trail rule in MMAS is that the best ants globally or only the best ants deposit pher-

omones after each cycle. The range of the quantity of pheromone is limited to [τmin,τmax] in

order to avoid staggering in the iteration; τmin and τmax denote the minimum and maximum

pheromone trail intensity, respectively. This rule is formulated as:

tijðt þ 1Þ ¼ ð1 � rÞtijðtÞ þ Dtbestij ðt; t þ 1Þ ð16Þ

Dtbestij ðt; t þ 1Þ ¼
Q

CostðAgbestÞ
ð17Þ

ρ: The quantity of evaporation (0< ρ< 1). All the pheromone intensities will evaporate in var-

ious degrees in order to avoid repeating the same path;

(1−ρ).τij(t): The remnant of pheromone quantity;

Dtbestij ðt; t þ 1Þ: Quantity of pheromones deposited on the link between node i and node j by

the ant that constructed a path with the least cost at tth iteration;

Fairness in optimizing bus-crew scheduling process
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Q: Control factor for a pheromone to avoid a cost value that is too large to converge to the

local optimal point early or too small to search randomly and is set as 10 in the following

experiments;

Cost(Agbest): Global minimum cost from the beginning until the present.

The updated trail rule effectively directs the ants to the most promising space, which rapidly

becomes the relatively optimal path.

HACO: Generating shifts rule

Based on the above rules, several nodes have been selected to construct an intact shift. How-

ever, due to the constraints on the total working time vj, the length of a shift is also limited.

Here, four conditions and their solutions are proposed according to the maximum total work-

ing time vmax and minimum total working time vmin.

vj < vmin

On the condition that the total working time for one shift is less than the minimum work-

ing time, if the following node in allowedpit and allowedci for this shift exists, then a new node is

added to the shift, otherwise, the uncompleted shift is considered as a new shift.

vmin � vj � vmax

If the total working time is within such range, a new intact shift is generated. The nodes are

placed in the Tabu Table, and then preparations can be made for the next shift.

vmax < vj � vmax þ g

If the total working time of this shift satisfies the above range, then a new shift with the

extra working time will be generated, calculating the overtime costs for this shift.

vj > vmax þ g

If the total working time exceeds the maximum extra working time, i.e., the working time

for the new, added spells is not adapted to this shift, then delete the new added node and

change another feasible spell. If no spell node is available for this uncompleted shift, then this

short shift will also be generated as a new shift.

Search procedure for solutions using the HACO algorithm

The main task of the HACO algorithm in solving the CSP-BD is to model the objects in the

search for the shortest path along a weighted graph with constraints. Calculations are then

made in the iterative process, and probabilities are generated as to where to move next, based

on pheromone densities and closeness levels. Some constraints are provided to limit the alter-

native sets, and appropriate parameters of the probability equation are chosen by trial and

error. The search procedure for the HACO-based algorithm is shown in Fig 2. The following

three main processes are illustrated in detail:

Initialization for three matrixes

Upon beginning the procedure for the HACO algorithm in solving the CSP-BD, some data

structure such as correlation matrix, pheromone matrix and heuristic matrix are defined in

order to store original and changing data. The correlation matrix stores the original spell data

Fairness in optimizing bus-crew scheduling process
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relationship and it remains unchangeable throughout the procedure and provides support for

most of the following matrixes. If spell node i coincides the depot and idle time constraints,

the matrix is filled with the idle time number; otherwise, it is filled with zero. The pheromone

matrix is consisted of pheromone density and changes its values in the iterative process. The

initiation of this matrix is on the basis of updating rules; all values in the matrix are at the mini-

mum limit. The heuristic matrix is generated based on the correlation matrix, for the only vari-

able in the heuristic function is idle time reflected in the correlation matrix.

Fig 2. Search procedure using the HACO algorithm. The first part of procedure expressing the

initialization at the beginning of algorithm. (b) the second part expressing the updating process. (c) the third

part expressing the key process of the algorithm.

https://doi.org/10.1371/journal.pone.0187623.g002
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Initialization for Tabu table

Before each ant starts to move, the Tabu Table, which is regarded as a node pool with the vis-

ited node, is empty. Thereafter, any visited node is put into the pool until the pool is full. Ulti-

mately, when an ant has traversed all routes, all visited nodes are placed into the pool.

Generating a new shift

The procedure combines the rules specified above, to generate a new shift, as shown in Fig 3.

First, generate a new undetermined shift according to various node choosing rules. Then, the

total working time of the new shift coincides the minimum and maximum working time limit.

We are then referred to some chosen conditions: a) the total working time confines to mini-

mum and maximum working time; b) the total working time is more than the maximum

working time yet less than the allowed maximum overtime; c) when the total working time is

less than the minimum working time, but no available nodes satisfy the current spell, then the

spell can also be considered as a new shift.

This figure illustrates the whole procedure of HACO algorithm in detail. At first, the struc-

ture of the main data is illustrated: the correlation matrix, the pheromone matrix and the heu-

ristic matrix. If the iteration i is less than the original maximum number iter_max, then the ant

number j is determined, and otherwise, the whole algorithm finishes. Then the Tabu table is

initiated and a new shift is generated if the Tabu table is not full. The new shift nodes are put

into the Tabu table until it is full, that is, all the nodes are put into the Tabu Table. If all ants

finish their routes, all solutions are estimated by calculating the total cost and storing the best

one. The pheromone density is updated in the pheromone matrix. Then application of the

algorithm and the search for the best solution is continued.

Fig 3. Procedure for generating a new shift in the HACO algorithm.

https://doi.org/10.1371/journal.pone.0187623.g003
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Computational tests

To test the performance of the proposed HACO for CSP-BD, two main computational experi-

ments were made. The first experiment was to determine the best parameter combinations for

this algorithm. The second experiment was to testify the sensitivity of unfair cost coefficients.

The computational tests of the HACO algorithm were carried out by applying the code in

MATLAB.

Parameter settings of HACO

The object of this section is to analyze the performance of HACO with different parameter set-

tings for CSP-BD instance with respect to bus line 26 with two depots, 44 blocks and 294 pieces

of work with the heuristic Gamma Function (G.F) in which the parameters are set as λ1 = 0.5,

λ2 = 0.05 and the constant coefficients in objective function are set as β1 = 15, β2 = 30, β3 = 7.5

(Yuan) and the minimal and maximal quantity of pheromone are set as τmin = 0.005, τmax = 3

(minute). The most important parameters considered in HACO include (a) exploration

threshold q0 or q0
0
, (b) the ratio of α:β (the relative importance of pheromone trails versus the

heuristic function), (c) trace persistence coefficient 1−ρ. This study briefly examines the influ-

ence of these parameters on HACO with respect to three criteria: the minimal and average

minimal cost in each iteration denoted by M.C. and A.M.C. and the number of the iterations

where the minimal cost is less than the total average minimal cost defined as Num. Then, we

determine the best combination of parameters for achieving the best results. Performance by

different combinations of parameter values is tested according to a series of experiments. The

various values for each parameter are q0 = 0.8,0.9,0.95, α:β = 1:1,1:2,1:5, ρ = 0.1,0.05,0.01. Each

parameter combination in Table 1 was run 20 times and there were 50 ants for each trial. The

results are presented in Table 2. From the obtained results, obviously, this combination, q0 =

0.9, α:β = 1:5, 1−ρ = 0.9, could get the best results with minimum cost, minimum average cost

and maximum number.

Experiments with the unfair cost coefficient

In this section, we choose a group of values for the unfair cost coefficient β3 in Eq (1) to deter-

mine the fairness in CSP-BD. The chosen value of β3 refers to the common cost coefficient

β1, that is, β3 = σβ1. The range of value for σ we define in this part includes two sets: R1 =

{0.1,0.3,0.5,0.7,0.9} and R2 = {1,2,3,4,5,6,7,8,9,10}. These experiments are based on bus line 26

with two depots, 44 blocks and 294 pieces of work with the heuristic Gamma Function (G.F)

in which the parameters are set as λ1 = 0.5, λ2 = 0.05 as well as q0 = 0.9, α:β = 1:5, 1−ρ = 0.9.

The maximum iteration is set as 200 and the number of ants is 50. The experiment results with

Table 1. Different parameter combinations.

NO. q0 α:β 1−ρ NO. q0 α:β 1−ρ NO. q0 α:β 1−ρ
1 0.8 1:1 0.9 10 0.9 1:1 0.9 19 0.95 1:1 0.9

2 0.8 1:1 0.95 11 0.9 1:1 0.95 20 0.95 1:1 0.95

3 0.8 1:1 0.99 12 0.9 1:1 0.99 21 0.95 1:1 0.99

4 0.8 1:2 0.9 13 0.9 1:2 0.9 22 0.95 1:2 0.9

5 0.8 1:2 0.95 14 0.9 1:2 0.95 23 0.95 1:2 0.95

6 0.8 1:2 0.99 15 0.9 1:2 0.99 24 0.95 1:2 0.99

7 0.8 1:5 0.9 16 0.9 1:5 0.9 25 0.95 1:5 0.9

8 0.8 1:5 0.95 17 0.9 1:5 0.95 26 0.95 1:5 0.95

9 0.8 1:5 0.99 18 0.9 1:5 0.99 27 0.95 1:5 0.99

https://doi.org/10.1371/journal.pone.0187623.t001
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the respective minimal total cost are listed in Table 3 with various costs represented in the

objective function equation. From Table 4, we may safely observe the changes of involved

costs with the growth of σ. Except for the clear increase of the minimal total cost and the unfair

cost, the common cost changes little and the extra cost relatively deceases. Besides, the fixed

cost seen from the number of duties also grows. The unfair cost obviously outweighs other

three costs when σ is greater than 2. Furthermore, we also calculate the occupancy p of each

cost in total cost in order to clearly compare the changes when the given parameter σ grows. In

Fig 4, we can clearly see that both the occupancy of common cost and fixed cost obviously

decrease while the occupancy of unfair cost increases significantly especially when the given

parameter σ is greater than 1. Moreover, we also see that the extra cost changes little that shares

a small proportion of the total cost.

Table 2. Results for different parameter combinations of Line 26 (the given shift number is 72 in real life made by manual work).

NO. M.C A.M.C NUM NO. M.C A.M.C NUM

1 12859.89 13127.01 2 15 13114.51 13319.46 0

2 12963.46 13186.77 1 16 12749.62 13080.98 5

3 13053.49 13178.98 0 17 13047.45 13311.54 0

4 12997.55 13117.31 0 18 13047.49 13244.93 0

5 12926.76 13154.14 3 19 13022.01 13203.37 0

6 12942.59 13178.70 2 20 12924.01 13125.69 1

7 12885.50 13064.93 3 21 12938.31 13176.17 1

8 12823.80 13170.35 2 22 12803.76 13074.32 4

9 12840.93 13176.08 2 23 12956.78 13126.53 1

10 12899.75 13145.55 2 24 13094.72 13239.91 0

11 13110.63 13345.84 0 25 12855.44 13072.66 4

12 13103.07 13339.54 0 26 13083.99 13198.50 0

13 13164.47 13307.56 0 27 13024.18 13219.16 0

14 12954.44 13186.26 1

https://doi.org/10.1371/journal.pone.0187623.t002

Table 3. Results for HACO with minimization in each iteration with σ ranging from 0.1 to 10; the unit for all cost is Yuan in the following tables.

σ Total Cost Common Cost Extra Cost Unfair Cost Shifts Fixed Cost

0.1 11902.43 6587 128 217.43 72 5040

0.3 12382.35 6559.25 94 689.10 73 5110

0.5 12826.73 6551.25 101.5 1133.98 73 5110

0.7 13294.21 6589.25 109.5 1555.46 73 5110

0.9 13809.53 6535.75 107 2126.78 73 5110

1 14172.52 6579.25 178 2375.27 73 5110

2 16080.55 6541.75 85.5 4413.30 73 5110

3 18690.25 6598.25 134 6918 73 5110

4 19848.81 6535.5 41.5 8231.81 73 5110

5 23150.71 6536 129.5 11445.21 73 5110

6 25820.16 6610.25 110.5 13989.41 74 5180

7 28151.66 6565.25 94 16382.41 74 5180

8 30505.61 6580.75 134 18680.86 74 5180

9 32781.84 6515.75 86 21070.09 74 5180

10 34215.04 6576.5 55.5 22473.04 74 5180

https://doi.org/10.1371/journal.pone.0187623.t003
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Experiment results

The conditions and best results of the improved ant-colony optimization algorithm are pre-

sented, based on the above experiments. The database for these computational tests was the

Beijing Bus Transit Group, one of the largest bus transit companies in the world with more

than 10,000 buses. We chose 10 bus lines with two depots from database that was shown in

Table 4. The parameters for HACO algorithm were q0 = 0.9, α:β = 1:5, 1−ρ = 0.9, using the

Gamma heuristic function and the iteration number was 200 and the number of ants was 50.

Experiments with σ = 1, σ = 2, σ = 5 were respectively done with the ten represented lines.

Other parameters were the same with the above experiments. The final solution was derived

from the average minimum results in these iterations. All experiments were run with Intel

Core i5-3570 CPU and 4 G installed memories (RAM).

The results are displayed in Tables 5–7 with three following tables. From those tables, it ver-

ifies once again that the changes of common cost, extra cost and fixed cost had no direct rela-

tionship with unfair cost for there is no obvious increasing or decreasing in those referred

Table 4. Ten bus lines with respective blocks and pieces.

Line Blocks no. Pieces no.

#306 18 144

#695 36 224

#348 16 241

#26 44 294

#43 25 296

#467 18 310

#28 27 378

#34 24 362

#345 72 628

#322 74 1108

https://doi.org/10.1371/journal.pone.0187623.t004

Fig 4. The occupancy of four basic costs at different σ for #26. (A) σ expressing the ratio between the

chosen value and the common cost coefficient. (B) four basiccosts expressing respectively common cost,

extra cost, unfair cost and fixed cost. (c) p expressing the occupancy ratio of each cost.

https://doi.org/10.1371/journal.pone.0187623.g004
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costs even though the increase of unfair cost ranges from several to several dozen times. Fur-

thermore, we may clearly see that the common cost, unfair cost and fixed cost are relative to

the respective bus lines. For example, all of those provided cost for #345 are the highest, in con-

trast, cost for #348 are the lowest. The value of common cost, unfair cost and fixed cost are

almost the same when the given parameter σ is equal to 2. The running time for each line was

also listed in the last column and the longest running time is #322 with the most pieces and

blocks. More experiments will be done in the future to test the relationship of the coefficients

of common, unfair and fixed cost. The extra cost, in our experiments is relatively low com-

pared with other cost for those chosen timetables made by dispatcher are strictly confined in

the given constraints of total working time.

Conclusion

In this work, we consider the fairness of total working and idle time in the process of solving

bus-crew scheduling problem using a powerful HACO based algorithm. A series of experi-

ments were done successively in order to determine the best combination of HACO algorithm

and validate the sensitivity of the unfair coefficient. From the results, we learned that the com-

mon cost, fixed cost and extra cost had no direct relationship with the unfair cost for the values

of those three costs were basically unchanged when the unfair cost increased. Except for extra

cost, the values of other three costs were very close when the unfair coefficient was at twice the

coefficient of common cost. Furthermore, both the occupancy of common cost and fixed cost

decreased while unfair cost occupancy deceased. In the last experiments, we chose ten bus

Table 5. Results for three experiments for σ = 1.

σ = 1 Total cost Common Cost Extra Cost Unfair Cost Fixed Cost Time(s)

#306 6221.72 2428.75 3.5 1339.47 2520 28.193

#695 13265.7 5775 0 2310.7 5250 52.474

#348 5326.05 2130 0 1096.05 2170 47.363

#26 14172.52 6579.25 178 2375.27 5110 79.621

#43 12228.9 4425.25 10 2893.66 4970 86.257

#467 7411.86 3402.25 0 1209.61 2870 85.352

#28 10681.35 4130.25 0 2491.10 4130 109.35

#34 9520.45 4035.25 0 1705.2 3850 95.07

#345 27814.14 10998.25 3.5 5822.39 11060 500.02

#322 26317.73 9736.25 0 5661.48 10990 1690.16

https://doi.org/10.1371/journal.pone.0187623.t005

Table 6. Results for three experiments for σ = 2.

σ = 2 Total cost Common cost Extra cost Unfair cost Fixed Cost Time(s)

#306 7936.20 2412.25 0 2863.95 2730 30.655

#695 15080.49 5739.75 0 4300.74 5110 56.508

#348 6547.84 2130.25 0 2247.59 2240 47.044

#26 16080.55 6541.75 85.5 4413.30 5110 80.821

#43 14792.61 4424.5 0 5468.11 4970 76.114

#467 8964.39 3376.75 0 2717.64 2940 69.813

#28 13081.97 4207.75 0 4884.22 4060 100.758

#34 11201.29 4030.25 0 3391.04 3850 92.647

#345 33270.12 11025 4 11531.12 10780 500.805

#322 31746.59 9806 0 11160.59 10850 1606.352

https://doi.org/10.1371/journal.pone.0187623.t006
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lines using real-life cases from the Beijing Public Transport Holdings (Group) Co., Ltd. with

pieces and blocks from lowest to highest under three unfair coefficients to examine the rela-

tionship of four given cost in the objective function. The final results showed that the common

cost associated with the fixed cost for both of the two costs related to the generated duties.

The unfair cost for all of bus lines approached to common and fixed cost when the unfair

coefficient was twice as much as that of common cost. For the extra cost with small value, it

seemed to relate indirectly to other costs. In addition, the results also clearly verified that

HACO algorithm performed noticeably advantages, especially for larger scale problems. In

our experiments, the bus line with 1108 pieces, 74 blocks consumed less than 30 minutes in an

acceptable time. More experiments will be done in the future to test the relationships of the

coefficients of common, unfair and fixed cost. In addition, it is worth noting that changing

cost parameters may exert an effect on the solution in cases in which serval costs and con-

straints parameters of the CSP-BD are set as constants. Therefore, more attention should be

paid to cost parameters in future works. A further study that is underway will add more con-

straints to the problem, such as meal time, driver or vehicle constraints and so on.
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Table 7. Results for three experiments for σ = 5.

σ = 5 Total cost Common cost Extra cost Unfair cost Fixed Cost Time(s)

#306 11908.42 2440 0 6878.42 2660 30.433

#695 20667.21 5763.25 0 9933.96 5040 53.533

#348 9582.41 2128.5 0 5283.91 2240 51.932

#26 23150.71 6536 129.5 11445.21 5110 85.584

#43 23421.83 4414 0.5 13967.33 5110 86.791

#467 13370.82 3416.5 0 6944.32 3080 67.534

#28 19665.11 4129.25 0 11545.86 4060 98.412

#34 16303.25 4056.75 0 8466.5 3850 91.975

#345 51328.53 10945.75 0.5 29322.28 11130 483.396

#322 47439.55 9773.5 0 27026.05 10710 1647.356

https://doi.org/10.1371/journal.pone.0187623.t007
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