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A B S T R A C T  

 

A battery electric vehicle (BEV) reduces greenhouse gas emissions and energy consumption to a 

greater extent than a conventional internal combustion engine vehicle. However, limited driving range, 

insufficient charging infrastructure, potentially long charging time and high monetary cost affect the 

route choices of BEV drivers. To provide BEV drivers with decision-making support for travelling and 

charging, a multi-objective optimisation model is built to optimise route choices for multiple BEVs. 

Three objective functions are proposed to minimise total travelling cost components, including travel 

times, energy consumption and charging costs. The fuzzy programming approach and fuzzy preference 

relations are introduced to transform the three objective functions into a single objective function that 

comprehensively considers the three optimisation objectives. A genetic algorithm is then designed to 

solve the model. In addition, a numerical example is presented to demonstrate the proposed model and 

solution algorithm. Four weighting conditions for BEV drivers based on different trade-offs among the 

objectives are considered in the numerical example. Results of the numerical example verify the 

feasibility and effectiveness of the proposed model and algorithm. 
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1. Introduction 

 

The dependence of human society on petroleum has contributed to the development of serious 

environmental and energy problems. In China, the energy consumption of the transportation sector 

accounts for 20% of the total energy consumption of the country (Wang et al., 2014) and is responsible 

for 8% of the total greenhouse gas (GHG) emissions nationwide (Hao et al., 2015). Given the public 

concern on climate change and advances in battery technologies, electric vehicles (EVs) have enjoyed 
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increasing use in recent years because they are frequently considered better options in terms of GHG 

emissions and energy consumption than internal combustion engine vehicles (ICEVs) (Onat et al., 

2015). In particular, battery EVs (BEVs) have been considered the most promising means of travel 

towards reducing the GHG emissions of the transportation sector given that they produce zero tailpipe 

emissions during operation (Diao et al., 2016). However, several disadvantages remain in using BEVs. 

Firstly, the driving range of BEVs is shorter than that of ICEVs because of the limited capacity of 

batteries in the former. Secondly, charging infrastructure in regional or metropolitan road networks 

remains insufficient, thereby causing trouble for drivers who need to recharge their BEVs. Finally, 

charging a BEV is relatively time consuming, and thus, significantly increases the travel times of BEV 

drivers. Therefore, limited driving range, insufficient charging infrastructure and long charging time 

increase driver range anxiety, i.e. the fear of depleting battery energy en route (Pearre et al., 2011). 

These disadvantages negatively affect the adoption of BEVs. To alleviate these disadvantages, 

information services on charging stations have been developed in China. These services provide 

information regarding the locations and availability of charging stations through the Internet, thereby 

allowing drivers to receive information in mobile devices, such as smartphones. When the battery 

energy of a BEV is insufficient to reach a particular destination, the driver must choose optimal routes 

that consider both travelling and charging from his/her departure point to his/her destination based on 

received information regarding charging stations. Therefore, special attention must be given to the 

route choice problem in BEVs. 

Conventional ICEVs are required to be filled with gas as necessary. Unlike ICEVs, BEVs 

frequently need charging during trips. Therefore, existing route choice methods for ICEVs cannot be 

applied to BEVs because the limited driving range and charging behaviour of BEVs are not considered 

in such strategies. In actual BEV operation, limited driving range and charging behaviour significantly 

influence the route choice of drivers. Several studies on route choice for BEVs have considered single 

objectives that aim to minimise energy consumption (Eisner et al., 2011; Andreas et al., 2010), total 

travel distance (Erdoğan et al., 2012) or charging time (Said et al., 2013). Moreover, several works 

have focused on building optimal routing models by simultaneously considering multiple objectives. 

Yang et al. (2013) proposed an optimisation model to determine the optimal charging route. The travel 

time from the point of origin to a charging station, queuing time for charging and charging time were 

considered as the objectives of their model. However, charging cost was disregarded. Alizadeh et al. 

(2015) developed an extended graph method for choosing a charging route that considered travel time 

and charging cost. The feasibility of their approach was verified via a numerical example. Sweda and 

Klabjan (2012) proposed a dynamic programming method to find a minimum-cost route when BEVs 

must charge en route. This strategy aimed to simultaneously minimise charging cost and energy 

consumption. Kobayashi et al. (2011) presented a route search method that considered route distance, 

travelling time and charging time. Limited driving range and charging station locations were 

considered the main constraints. However, these studies have not explored the situation that involves 

multiple BEVs. The route choices of multiple BEVs interact with one another because of the 

insufficient number of charging stations. 

Few works have analysed the route choice problem in multiple BEVs. He et al. (2014), Jiang and 

Xie (2014) and Jiang et al. (2014) proposed optimisation models that involve network equilibrium 

based on network equilibrium theory. For example, He et al. (2014) formulated three mathematical 

models to describe network equilibrium flow distributions on a road network by considering the flow 

dependency of energy consumption and charging time. These models aimed to minimise travel time or 
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costs. Moreover, several optimal routing and charging models have been proposed to alleviate the 

negative effects of large-scale charging behaviour on a power distribution network (Putrus et al., 2009; 

Fernández et al., 2011; Qian et al., 2011; Guo et al., 2011).  

Although several works have investigated the route choice problem in BEVs, only few studies 

have given attention to optimal route choices for travelling and charging multiple BEVs that consider 

multiple objectives. In general, BEV drivers are required to spend considerable time and cost to charge 

their vehicles. The characteristic energy consumption of BEVs differs from that of conventional ICEVs. 

Therefore, comprehensively considering travel time, energy consumption and charging cost is 

important to successfully address the route choice problem in BEVs.  

The approach proposed in this study may be used by charging station operators to provide BEV 

drivers with optimal routes for travelling and charging. This method may also be utilised by city 

planners to design public charging infrastructure that will fulfil the needs of BEV drivers. 

The contributions of this study are as follows. Firstly, a multi-objective optimisation model is built 

to explore the optimal routes for travelling and charging multiple BEVs. The three objectives are to 

minimise the total travelling cost components, namely, travel times, energy consumption and charging 

costs. Secondly, driving time, queuing time and charging time are considered in calculating travel time. 

The relation between energy consumption per kilometre (ECPK) and driving speed is explored based 

on BEV operation data. Charging cost includes electricity cost, service cost and parking fee. Lastly, the 

fuzzy programming approach (FPA) and fuzzy preference relations (FPR) are introduced to transform 

the proposed multi-objective optimisation model into a model with a single objective function that 

comprehensively aims to optimise the total travelling cost components. The trade-off among the 

different travelling cost components for BEV drivers is considered in the model. A genetic algorithm 

(GA) is designed to address the model, and a numerical example is presented to demonstrate the 

proposed model and solution algorithm. Moreover, compared to the existing formulations in previous 

literature, the proposed model simultaneously optimises three objectives with different magnitudes for 

multiple BEVs, and further considers the interactions of different BEVs. The formulations of the 

objectives in the model are based on the total travelling cost components of all BEVs that 

simultaneously make charging requests, and the travel time demand of the individual driver is also 

considered in the constraints of the model.  

The remaining portions of this paper are organised as follows. Section 2 constructs the optimal 

route choice model with multiple objectives for multiple BEVs. Section 3 discusses the methods for 

model transformation and introduces the designed solution. Section 4 presents a numerical example to 

demonstrate and verify the proposed model and solution methods. Lastly, Section 5 provides the 

conclusions and directions for future research.     

 

2. Multi-objective optimisation model for route choices of multiple BEVs 

 

The proposed model is oriented to address the route choice problem in BEVs. The routes 

based on driver willingness to deviate from the shortest path to access destinations may not be 

available for BEVs because of their limited driving range. The distance of an available route must 

be within the driving range of a BEV, which lacks a charging station along the route. Otherwise, 

the route is regarded unavailable unless at least one charging station is present along the route and 

the BEV can be charged to avoid energy depletion before reaching its destination. For example, 

Fig. 1 illustrates the available and unavailable routes for BEVs. The origin–destination (O–D) pair 
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1–3 is connected by two routes, namely, 1–3 and 1–2–3. A charging station is located at node 2. 

We assume that the nominal capacity of a battery is 24 kWh, and the initial energy is 9.6 kWh. 

The energy consumed to traverse a route depends on the distance and traffic congestion of the 

route (Bigazzi et al., 2012). We also assume that the energy consumed for traversing routes 1–2, 

2–3 and 1–3 are 6.4, 10.5 and 10.8 kWh, respectively (Fig. 1). Then, route 1–3 is easily 

determined as unavailable because 9.6 kWh is less than 10.8 kWh. Along route 1–2–3, the BEV 

can reach node 2 to recharge its battery because 9.6 kWh is higher than 6.4 kWh, and then arrive 

at node 3, which is its destination.  

1

2

310.8 kWh

6.4 kWh 10.5 kWh

unavailable

available

 

Fig. 1. Toy road network with three nodes. 

     

    The main objective of the proposed model is to provide decision-making support for BEV drivers 

in determining optimal routes from departure points to destinations with optimal charging stations 

along the routes to charge BEVs. To avoid energy depletion and successfully reach their destinations, 

BEV drivers must choose available routes, which may result in additional travel time and monetary 

cost compared with their intended routes. These additional costs, which are attributed to charging 

behaviour, increase driving time and energy consumption because of extra detour distance and 

different traffic conditions. Therefore, the objective of BEV drivers is to find optimal available routes 

and charging stations along these routes to minimise travel times, energy consumption and charging 

costs.  

     On the basis of BEV operation state, battery state, charging station operational status and driver 

demands, an optimal route choice model is built in this study by considering three optimisation 

objectives, i.e. minimising travel time, energy consumption and charging costs.  

 

2.1. Basic assumptions  

     

To facilitate model construction, several assumptions are made as follows. 

 

Assumption 1: We consider range anxiety and assume that when the locations of departure points, 

charging stations and destinations are determined, the routes with minimum energy consumption from 

departure points to charging stations and from charging stations to destinations are chosen.   

Assumption 2: We assume that BEV drivers make charging requests and charge BEVs only once 

between departure points and destinations because trips with more than one charging are generally 

uncommon (Sun et al., 2016). Moreover, for trips with more than one charging, the model can be used 

repeatedly by setting dummy destinations to address the problem. The dummy destination from the 

previous charging will be set as the departure point for the next charging.  

Assumption 3: To reduce model complexity, we assume that all BEVs have batteries with the same 

nominal capacity. 

Assumption 4: To reduce model complexity, we assume that chargers in the same charging station 
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provide the same charging power, and only one charger can be used by one BEV at a particular time.  

 

2.2. Objective functions 

For model formulation, we assume the existence of m target BEVs and n charging stations in a 

road network (i=1,…,m; j=1,…,n). The route between the departure point and the destination consists 

of two sub-routes, namely, the route from the departure point to a charging station and the route from 

the charging station to the destination. For distinction, BEVs that simultaneously make charging 

requests, i.e. the research targets, are defined as the target BEVs. 

The decision variable of the model is the binary variable ijx , which is equal to 1 if BEV i chooses 

charging station j to charge its battery; otherwise, this variable is 0. 

 

2.2.1. Minimising travel times 

 

During the trip, an important factor that influences route and charging station choice is travel time, 

which includes queuing, charging and driving times. Given the preceding assumption, the objective 

function for minimising travel times can be expressed as follows: 
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 Objective (1) minimises the total travel times T of all target BEVs, which involves a zero–one 

integer programming, where q
ijt  is the queuing time of BEV i in charging station j; c

ijt is the charging 

time of target BEV i in charging station j; and os
ijt and sd

ijt  are the driving times of target BEV i 

operating from its departure point to charging station j and from charging station j to its destination, 

respectively. 

Eq. (2) presents the queuing time of target BEV i in charging station j, which is a piecewise 

function. When a BEV reaches a charging station and no charger is free, the driver incurs queuing delay. 

Otherwise, the BEV is immediately charged using a free charger. Let zij denote the number of BEVs in 
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charging station j when target BEV i reaches this charging station. To determine queuing time, zij must 

be estimated. zij is equal to the greatest value of zero and o s d
j ij ijz z z   where o

jz is the number of BEVs 

in charging station j when the target BEVs make charging requests simultaneously; and s
ijz and d

ijz are the 

numbers of BEVs reaching and leaving charging station j, respectively, during period os
ijt . o

jz can be 

immediately obtained through information services about charging stations. Moreover, we assume that 

the average BEV arrival rate for charging station j is j , and s
ijz is equal to os

j ijt during period os
ijt . Let 

0
jky  (k=1,2,…,hj) denote the energy of the BEVs being charged in charger k when the target BEVs 

make charging requests simultaneously. In this case, hj is the number of chargers in charging station j. 

In general, BEV drivers will begin charging even when their BEVs are not yet about to run out of 

energy to protect battery and alleviate range anxiety (Sun et al., 2015). By contrast, when the energy of 

batteries is less than a fixed value, the power warning system of BEVs can remind drivers to charge 

their batteries. Therefore, the mean energy at charging initiation can be reasonably assumed as a fixed 

value, with e′ denoting the fixed value. Moreover, drivers do not necessarily fully charge their BEVs 

because of the long charging time and the aim to reach their destinations as quickly as possible. When a 

BEV is charged, its battery energy can reach a certain value within a relatively short period, which is 

generally sufficient to reach its destination (Yong et al., 2015). Therefore, we assume that the mean 

energy at charging termination is the aforementioned value, and let e denote this value. The average 

charging amount of BEVs is e=e e  . Let pj denote the charging power of the chargers in charging 

station j. During period os
ijt , the total charging amount of charger k is equal to os

j ijp t kWh. Let  d
ijkz denote 

the number of BEVs leaving charger k in charging station j during period os
ijt . For charger k, if

0eos
j ij jkp t y  , then no BEV leaves charger k and 0d

ijkz  . If 0eos
j ij jkp t y  , then at least one BEV 

departs from charger k during period  os
ijt , and the number of BEVs leaving charger k is expressed as 
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where (b)INT is the maximum integer less than or equal to b.  

The number of BEVs departing from charging station j is           
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Therefore, zij is obtained because o
jz , s

ijz and d
ijz are determined. If zij <hj, then =0q

ijt , as shown in 
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Eq. (2). However, if zij ≥hj, then >0q
ijt . Let yijk be the energy of the BEV charged in charger k at charging 

station j when target BEV i reaches this charging station. To determine q
ijt  when zij ≥hj , yijk must be 

estimated. The estimated value of yijk is 

  

                 0 eo s d
i j k j i j j k i j ky p t y z   .       .                       (8) 

 

For all the chargers k (k=1,2,…,hj) in charging station j, yijk are arranged in descending order to 

determine the charger used to charge target BEV i. Let ( )r
ijky (r=1,2,…,hj) denote the energy of the BEVs 

charged in charger k with serial number r in descending order. For example, if 1 2r r , then 

1 2

1 2

( ) ( )
 

r r
ijk ijky y . In particular, the BEV charged in charger k2 with 2

2

( )r
ijky completes charging firstly, and then 

the BEV in charger k1 completes charging subsequently. The estimated serial number of charger k used 

to charge target BEV i is '' ( ) 1
ij

j

z
r MOD

h
  , where ( )

ij

j

z
MOD

h
is the remainder of 1

2

b

b
. For example, if 

zij=4 and hj=3, then
4

'' ( ) 1=2
3

r MOD  , and target BEV i uses charger k with serial number '' 2r   to 

charge its battery. Fig. 2 presents the queuing process of the target BEV in a charging station. 

 

Charger 1 Charger 2 Charger 3

ys1
（3） ys2

（1） ys3
（2）

BEV 1 BEV 2 BEV 3

BEV 4Complete 

charging firstly

Complete 

charging 

secondly

Target BEV
Start charging 

 

                  Fig. 2. Queuing process in the charging station. 

 

Eq. (3) presents the charging time of target BEV i in charging station j. The main factors that 

affect charging time are charging amount and pj. pj can be obtained through the information of the 

charging station. However, the charging amount of target BEV i charging at charging station j must be 

estimated. When target BEV i reaches charging station j, the remaining energy s
ije  is  

  

                         
0s os

ij i ije E    ,                            .       (9) 
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where 0
iE is the initial energy of target BEV i and os

ij  is the energy consumption of target BEV i 

driving from its departure point to charging station j, which is determined based on Eq. (13) presented 

in the following subsection.  

To ensure that target BEV i will successfully reach its destination without depleting its energy en 

route, its battery energy at charging completion in charging station j must be greater than the energy 

consumption of BEV i from charging station j to its destination. Moreover, when target BEV i reaches 

its destination, its battery energy cannot be depleted because of driver range anxiety. Let d denote the 

lower limit of battery energy at the destination. To obtain minimum charging time, we assume that 

when target BEV i reaches its destination, the remaining energy is equal to d . Therefore, when target 

BEV i completes charging at charging station j, its energy
s
ije is given by 

 

s sd d
ij ije    ,                            .    (10) 

 

where sd
ij is the energy consumption of target BEV i driving from charging station j to its destination, 

which is determined based on Eq. (14) as shown in the following subsection. 

Eqs. (4) and (5) present the driving times for the two sub-routes. Let A denote the set of all links a 

in the network. In general, the driving time of a BEV traversing link a A  is a strictly increasing 

function of traffic flow on link a. The Bureau of Public Roads (BPR) function can be adopted to 

present the relation between driving time and traffic flow (He et al., 2013). For example, the following 

form of BPR function can be used:  
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where ta is the driving time of a BEV traversing link a, 0
at  is the free-flow driving time of link a, ca is 

the capacity of link a and va is the traffic flow of link a. 

 

2.2.2. Minimising energy consumption 

 

The energy consumption between the departure point and the destination is also an important 

factor that influences route and charging station choices. The objective function for minimising energy 

consumption can be given as follows: 
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    Objective (12) aims to minimise the total energy consumption U of all target BEVs, which is a 

zero–one integer programming, where os
ij  and sd

ij  are the energy consumption levels of target BEV 

i driving from its departure point to charging station j and from charging station j to its destination, 

respectively. 

  Eqs. (13) and (14) present the energy consumption of target BEV i traversing the two 

aforementioned sub-routes, respectively, where a  is the energy consumption when a BEV traverses 

link a, and os
ijA A and sd

ijA A  are the set of links traversed by target BEV i from its departure point 

to charging station j and from charging station j to its destination.  

In general, energy consumption is typically proportional to the driving distance with fixed ECPK, 

and ECPK depends on driving speed. For both BEV and ICEV, energy consumption increases as 

driving distance increases with fixed driving speed. However, with fixed driving distance, the change 

trend of BEV energy consumption differs from that of ICEV energy consumption when driving speed 

changes. The relation between ECPK and BEV driving speed is nonlinear (Gardner et al., 2013). To 

obtain a , data from BEVs operating in Beijing are adopted to explore the relation between ECPK and 

driving speed. The data are collected from 70 BEVs that are widely used in Beijing and other similar 

cities. The BEVs operate in the road network as regular vehicles and the data are obtained online 

through an internal controller area network bus. Thus, the experimental data have significant 

representativeness, which can ensure the practicability of experimental results. The experimental data 

include 65 complete discharging processes of BEV battery and driving speed. Fig. 3 presents the fitting 

result of the relation between ECPK and driving speed. 

                       

 

      Fig. 3. Relation between driving speed and ECPK based on experimental data. 

 

The average driving speed as  can be obtained as follows:  

 

                              a
a

a

l
s

t
 ,                      .            (15) 

where la is the length of link a. From the fitting result shown in Fig. 3, ECPK is expressed as 
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            5 2 37.344 10 7.656 10 0.3536a a as s          ,   .  .. .            (16) 

 

where a refers to ECPK when a BEV operates on link a. Moreover, the determinate coefficient of the 

fitting result is 0.735, which indicates that the result demonstrates a good fitting effect (Yao et al., 

2014). It is noted that, based on the experimental data as shown in Fig. 3, the unit of as in Eq. (16) is 

km/h and a is kWh/km. Different from a , a is the energy consumption when a BEV traverses link 

a, which is determined by the length of link a al , besides a . a can be obtained as follows: 
 

 

                              a a al   .             .        .  .   ...   (17) 

 

In Eq. (17), considering a being obtained by Eq. (16) and its unit being kWh/km, the unit 

of al is km. Thus, the unit of a in Eq. (17) is kWh.   

 

2.2.3. Minimising charging costs 

 

Another important factor that influences route and charging station choice is the cost of charging 

batteries in charging stations, which includes electricity cost, service cost and parking fee. The 

objective function for minimising charging cost is as follows: 

 

,          
1

min  min  ( )
m e g p

ij ij ij iji
C c c c x


   ,     .               (18) 
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                           ( )e e s s
ij j ij ijc e e  ,                .   .            (19) 

 

                            ( )g g s s
ij j ij ijc e e  ,                 .               (20) 

  

( )p p q c
ij j ij ijc t t  .     .   .  .                 .    

(21) 

 

Objective (18) minimises the total charging cost C of all target BEVs, which is a zero–one integer 

programming, where e
ijc , g

ijc  and p
ijc  are the electricity cost, service cost and parking fee, respectively, 

of target BEV i charging in charging station j. 

Eqs. (19) and (20) present the electricity and service costs of target BEV i charging in charging 

station j, which are proportional to the charging amount, where e
j and g

j are the unit electricity and unit 

service costs, respectively. These parameters can be immediately obtained through charging station 

information.  

Eq. (21) calculates for the parking fee of target BEV i charging in charging station j, which is 
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proportional to the sum of queuing and charging times, where p
j is the unit parking fee of charging 

station j, which can be immediately obtained through charging station information. 

              

2.3. Constraints 

 

Several constraints on the route choice of target BEVs are illustrated to ensure operating safety 

and complete travel. 

For target BEV i, if charging station j is chosen to charge its battery (xij = 1), then s
ije should not be 

less than zero to ensure that BEV i can successfully reach charging station j. Moreover, if xij = 0, then 

s
ije  is not considered, as shown in Eq. (22): 

 

0      s
ij ije x  (i=1,…,m; j=1,…,n).            .            (22)     

 

 Let E denote the nominal capacity of BEV batteries. To ensure that target BEV i can successfully 

reach its destination after charging at charging station j, s
ije  should not exceed E. Moreover, if xij = 0, 

then s
ije  is not considered, as shown in Eq. (23): 

 

     s
ij ije x E (i=1,…,m; j=1,…,n).          .. .     .       (23) 

                 

To satisfy the travel time demand of the driver, the travel time of target BEV i must not be greater 

than the upper limit of travel time i , as shown in Eq. (24): 

                                 

    ( )   q c o s s d
i j i j i j i j i j it t t t x      . (i=1,…,m; j=1,…,n).             .    (24)    

 

Let Vj denote the maximum number of BEVs that can stop over at charging station j. To ensure 

that target BEV i can choose charging station j to charge its battery, the number of BEVs in charging 

station j, including target and other BEVs, must not be greater than Vj, as shown in Eq. (25): 

                                                   

                       
1

    
m

ij ij ji
z x V


      ( j=1,…,n).          .    ..      (25) 

 

For each target BEV, only one charging station can be chosen to charge its battery, as shown in Eq. 

(26): 

 

1
1       

n

ijj
x


 .     (i=1,…,m).              .       (26)   
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  Eq. (27) ensures that the decision variable xij is the binary variable.                

 

                       {0,1}     ijx     . (i=1,…,m; j=1,…,n)               .     (27) 

 

Notably, in previous literature, the constraints mainly consider the limited driving range, battery 

capacity and charging station locations. Besides these conventional constraints, other constraints are 

considered in the model. The difference between the constraints in the proposed model and the 

previous literature lies in the following two aspects. Firstly, the travel time demand of the individual 

target BEV is considered in the constraints when the total travel times of all target BEVs reach the 

optimal value, as shown in Eq. (24). Secondly, the constraints further consider the interactions of 

different BEVs’ charging behaviour, which is critical for the route choice problems when considering 

multiple target BEVs, as shown in Eq. (25).  

                                

3. Model transformation and solution 

 

3.1. Model transformation 

 

The proposed model is a multi-objective optimisation problem (MOP). In general, the optimal 

solution for MOP cannot make all the objective functions obtain the optimal solutions simultaneously. 

Conventional solution methods cannot be adopted to solve this problem (Liu et al., 2014). To solve 

MOP, an effective method is to transform this problem into a model with a single objective function. 

However, the objective functions with different magnitudes cannot be directly combined by a 

deterministic approach, because the dimensions of the objective functions are not uniform. Therefore, 

FPA is applied to address the problem given the different magnitudes of each objective. This method 

adopts a membership function to quantify the fuzzy goals of the objective functions, and the solution is 

obtained objectively (Stanley, 2001). Through the membership function of FPA, the closeness of the 

obtained solution to the optimal solution for each objective function is determined, which has fuzzy 

properties, and the dimensions of the objective function are not considered in the outputs of the 

membership function. For the proposed multi-objective optimisation model, the objective functions 

include min T, min U and min C, as shown in Eqs. (1), (12) and (18), respectively. When min T is 

selected as the example, the linear membership function (Wang et al., 2009) is used to describe the 

fuzzy goals of min T to facilitate solution computation as follows: 

 

max

max
min max

max min

min

0                               

( )
( )          

( )

1                               

T T

T T
u T T T T

T T

T T

 



  


 

,  .                  (28)                          

 

where ( )u T denotes the linear membership function of objective min T, and Tmin and Tmax are the 

minimum and maximum values, respectively, of T. 

Moreover, the trade-offs among different travelling cost components for BEV drivers are 
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important factors in choosing routes (Sun et al., 2016). Such trade-offs are described by the weighting 

coefficients of different objectives, which are used to transform several linear membership functions 

into an objective function. The importance degree relations among the objectives are considered, and 

fuzzy preference relations (FPR) are used to obtain the weighting coefficients of each objective (Chen 

et al., 2012). To present the trade-offs among different objectives for BEV drivers, let ' , ' , and   

denote the relations of extreme unimportance, unimportance and equal importance, respectively, 

between two different objectives. For example, the relative importance between objectives T and U is 

indicated as follows:  

 

 '        , 1

 '         , 1      (0< < <0.5)

          0.5

TU UT

TU UT

TU UT

if T U then

if T U then

if T U then

   

     

 

   


   
   

,            (29) 

                  

where TU and UT are the corresponding relative importance coefficients, which range from 0 to 1, and 

1TU UT   ; and  are the parameters that represent the values of TU and UT , respectively, 

when the relation between two different objectives is not equally important. When the relation is 

equally important, the values of TU and UT  are equal to 0.5. For objective T, the summation of the 

relative importance coefficients is 

 

( )R TU TCS T    ,              .                ..(30) 

 

where ( )RS T is the summation of the relative importance coefficients between T and other objectives.  

The weighting coefficient of objective T is as follows: 

 

      
( )

( )
( ) ( ) ( )

R

R R R

S T
W T

S T S U S C


 
,          .          .    (31) 

 

where ( )W T is the weighting coefficient of objective T. 

Furthermore, given the linear membership functions ( )u T , ( )u U and ( )u C , and the weighting 

coefficients of the objectives ( )W T , ( )W U and ( )W C , the proposed model can be transformed into a 

model with a single objective function to obtain the maximum value as follows: 

1

max  [( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ]p p p pZ W T T W U U W C C     ,             (32) 

where Z is the objective function value, and p is the distance coefficient. The possible values of p can 

be determined based on the following situations. 

 

Situation 1: p=1. The objective function is to obtain the maximum value of the linear weighted 

sum of the three objectives, namely Manhattan distance, as follows: 

 

                     1 max  [ ( ) ( ) ( ) ( ) ( ) ( )]pZ W T T W U U W C C      .          .     (33) 

 

Situation 2: p=2. The objective function is to obtain the maximum value of the square root of the 
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quadratic weighted sum of the three objectives, namely Euclidean distance, as follows: 

 

                

1

2 2 2 2
2 max  [( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ]pZ W T T W U U W C C      .     .   .   (34) 

 

Situation 3: p  . The objective function is to obtain the maximum value of the objective with 

minimum weighted value among the three objectives, namely Chebyshev distance, as follows: 

 

              max  [min{ ( ) ( ), ( ) ( ), ( ) ( )}]pZ W T T W U U W C C    .               (35) 

 

3.2. Model solution 

 

Through model transformation, a multi-objective optimisation model with a single objective 

function is obtained. This problem is a complex nonlinear optimisation problem. Adopting an effective 

algorithm to solve the problem is highly important. A GA is a stochastic optimisation procedure that 

can solve optimisation problems in different situations. Therefore, a GA is designed to obtain the 

optimal solution, i.e. to determine the routes with minimum comprehensive travelling cost for target 

BEVs. 

A GA records the parameters of the problem into the chromosome. For the proposed model, the 

serial numbers of the charging stations, which are chosen by the drivers of target BEVs to charge their 

vehicles, are chosen as genes for any chromosome. The number of chromosomes is defined as the 

population size. A chromosome represents the choice result of the charging stations for the target BEVs. 

A chromosome is formed by the 1 m  vector, where m is the number of target BEVs in a road 

network, and the value of each gene in the chromosome is the serial number of the charging station that 

is chosen by the driver of corresponding target BEV. The fitness functions are the objective functions 

shown in Eqs. (33)–(35). An iterative operation is applied to optimise the chromosomes through 

selection, intercross and mutation operations. The detailed operation steps are described in the relevant 

literature (Shafahi, et al., 2010). Moreover, to ensure that the solutions satisfy the constraints of the 

model, a check operation is applied to determine the values of objective functions under each 

chromosome in each iterative operation after intercross and mutation operations. The check operation 

considers the constraints shown in Eqs. (22)–(25). If a chromosome does not satisfy at least one of the 

constraints, the values of objective functions under the chromosome are equal to zero. Otherwise, the 

values of objective functions are equal to their true values, which are greater than zero. Through the 

check operation, the chromosomes that do not satisfy the constraints are deleted from the solutions 

since the objective functions are to obtain the maximum value. The constraints shown in Eqs. (26)–(27) 

are considered and satisfied when forming the chromosomes. For GA termination, many studies have 

used three termination criteria to end the algorithm (Kang et al., 2015) as follows. (1) The optimal 

solution does not change after a given number of iterations. (2) The difference between the optimal and 

worst solutions in a population is less than a given value. (3) The iterations reach the maximum number. 

In this study, the third method is adopted as the termination criterion. 

A GA is adopted to obtain the optimal solutions for the objective functions as shown in Eqs. (33)–

(35), and the solution with the minimum comprehensive travelling cost among the three situations is 

selected as the final optimal solution for the proposed model. The comprehensive travelling cost cannot 
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be obtained immediately because of the varying dimensions of different travelling costs. However, the 

comprehensive travelling costs of different situations can be compared in pairs to determine the 

solution with the minimum comprehensive travelling cost. The comparison method aims to obtain the 

weighted summation of the ratios of the solution values T, U and C between two situations based on the 

weighting coefficients. For example, to compare the comprehensive travelling costs of situations p = 1 

and p = 2, the results are 

 

     
1 1 1

2 2 2

( ) ( ) ( )1

2 ( ) ( ) ( )

( ) ( ) ( ) ( )
p p p

p p p

Z Z Zp

p Z Z Z

T U CZ
W T W U W C

Z T U C


  

  





   ,                         (36) 

 

where 1

2

( )
p

p

Z

Z






is the comparison coefficient between situations p = 1 and p = 2, and its value is 

compared with 1. If the value is less than 1, then the comprehensive travelling cost of situation p = 1 is 

less than that of situation p = 2; otherwise, the relation is not achieved. 
1( )pZT


,
1( )pZU


and 
1( )pZC


present 

the T, U and C values, respectively, under the objective function 1pZ  , and
2( )pZT


, 

2( )pZU


and  
2( )pZC



are the T, U and C values, respectively, under the objective function 2pZ  .  

 

4. Numerical example 

 

4.1. Example scenario description 

 

In this section, a numerical example is presented to demonstrate the proposed model. The model is 

applied to solve a route choice problem for multiple BEVs in the road network that consists of 27 

nodes and 84 links (Fig. 4). In this numerical example, 6 target BEVs and 5 charging stations exist in 

the road network. Among the nodes of the road network, 5 nodes (yellow) have charging stations. In 

addition, 6 departure point nodes (red) and 6 destination nodes (green) are present. The other 10 nodes 

(grey) are the normal nodes that may be passed by the target BEVs. 
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                        Fig. 4. Road network for the numerical example. 

 

The departure point nodes are numbered 1, 6, 7, 11, 16 and 24. The destination nodes are 

numbered 10, 15, 20, 22, 23 and 25. The O–D pair are 1 → 10, 6 → 25 , 7 → 15 , 11 → 22 , 

16 → 23 and 24 → 20. The initial energy of the target BEVs at nodes 1, 6, 7, 11, 16 and 24 are 11.11, 

11.55, 7.81, 11.58, 10.24 and 7.67 kWh, respectively. The nominal capacity of the batteries is E = 24 

kWh. The nodes with charging station are numbered 4, 8, 12, 26 and 27. Table 1 lists the given 

parameters of the charging stations at each node, which includes charger number hj, unit electricity cost

e
j ($/kWh), unit service cost g

j ($/kWh), unit parking fee p
j  ($/h), BEV number o

jz , arrival rateλj 

(veh/min), charging power pj (kWh/h) and maximum number of BEVs stopping over at charging 

station Vj. Moreover, when determining the values of the parameters, the actual experience and 

operating information regarding the charging stations in Beijing are considered. The logic behind the 

determination of the parameter values is as follows: The values of hj,
o
jz and pj are randomly determined 

within the reasonable ranges based on the actual experience. The values of e
j , g

j and p
j

 
refer to the 

relevant price of charging stations in Beijing. The values ofλj are determined based on the values of hj 

and the assumption that the charging station with more chargers would attract more BEVs (not the 

target BEVs) to choose it. The values of Vj are randomly determined within the reasonable ranges and 

larger than hj in each charging station.         
  

 

Table 1  

Parameters of the charging stations at each node. 

Nodes hj 
e
j   g

j  p
j    o

jz  λj pj Vj 

4 3 0.2555 0.1221 0.3052 2 0.0423 50 16 
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 8 10 0.2555 0.1221 0.3052 9 0.1429 40 18 

 12 4 0.2555 0.1221 0.3052 5 0.0571 50 16 

 26 10 0.2555 0.1221 0.3052 11 0.1429 30 20 

 27 4 0.2555 0.1221 0.9156 5 0.0571 40 18 

 

For the BEVs being charged in the charging stations, with the exception of the target BEVs, we 

assume that the mean energy at charging initiation e′ is equal to 7.2 kWh, and the mean energy at 

charging termination e  is equal to 19.2 kWh. Moreover, Table 2 presents the given parameters for 

capacity and free-flow travel time of each link. 

 

Table 2  

Capacity ca (10
3
 veh/h) and free-flow travel time 0

at  (min) of each link. 

 

To determine the driving time of each link, the traffic volume on each link is required. Table 3 lists 

the given parameters of the traffic volume and length of each link. 

Link  ca     0
at  Link  ca  

0
at  Link  ca 

0
at  

1–2 41.85 12.18 4–3 34.84 15.87 6–3 31.75 16.70 

1–7 45.85 9.78 4–6 13.53 13.42 6–4 15.85 14.30 

2–1 11.59 18.68 4–10 37.07 14.01 7–1 39.06 15.02 

2–3 46.19 18.65 5–1 7.40 11.65 7–8 17.22 13.79 

2–5 33.82 13.96 5–2 18.18 16.37 8–7 28.26 10.96 

3–2 10.29 13.55 5–6 8.03 11.20 8–5 36.76 11.80 

3–4 18.25 12.81 6–5 10.27 14.48 8–9 45.20 12.87 

9–8 30.06 17.27 11–12 42.23 11.76 14–11 48.21 10.85 

9–6 48.13 12.24 12–11 36.57 11.92 14–13 30.08 16.82 

9–10 48.46 10.72 12–9 19.95 14.11 14–15 12.10 11.59 

10–4 12.93 17.46 12–21 47.81 15.72 14–17 12.57 11.79 

10–9 48.71 13.24 13–7 7.52 10.64 15–12 17.33 10.20 

10–25 48.11 11.79 13–14 25.30 18.49 15–14 43.00 12.22 

11–8 27.36 13.11 13–16 22.79 16.82 15–18 17.19 13.27 

15–26 41.21 10.11 17–20 39.68 13.35 20–19 41.83 12.75 

16–13 12.24 11.16 18–15 40.99 14.04 20–27 16.72 16.54 

16–17 24.56 18.61 18–17 14.22 12.92 21–12 46.89 12.78 

16–19 46.29 17.26 18–22 27.55 12.84 21–25 31.75 10.94 

17–14 40.86 15.68 19–16 25.60 13.60 22–18 15.85 17.66 

17–16 48.22 9.18 19–20 34.44 13.96 1–5 41.85 12.18 

17–18 34.85 11.00 20–17 37.21 16.09 3–6 45.85 9.78 

23–27 7.57 12.51 26–15 39.21 16.04 6–9 11.59 18.68 

24–22 43.36 16.61 26–24 18.15 14.29 7–13 46.19 18.65 

24–23 47.10 9.77 26–25 35.91 12.00 9–12 33.82 13.96 

24–26 35.86 9.69 27–20 34.82 17.16 8–11 10.29 13.55 

25–10 39.34 10.07 27–23 13.15 13.73 11–14 18.25 12.82 

25–21 38.70 15.11 22–24 11.24 13.08 12–15 30.06 17.27 

25–26 23.26 15.93 23–24 27.93 19.29 5–8 36.76 11.80 
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Table 3  

Traffic volume va (10
3
 veh/h) and length la (km) of each link. 

 

For the target BEVs, we assume that the remaining energy in the destination d is equal to 7.2 

kWh. The upper limit of the total travel time i is 1200 min. Given Eq. (11), the driving time when a 

BEV traverses each link are obtained. Then, based on the data fitting result regarding the relation 

between driving speed and ECPK, as shown in Fig. 3, the energy consumption when a BEV traverses 

each link are obtained using Eqs. (15)–(17). Table 4 lists the driving time and energy consumption of 

each link a in the road network. 

 

Table 4  

Driving time ta (min) and energy consumption a  (kWh) of each link a. 

Link    va   la Link  va la Link  va la 

1–2 14.6 14.17 4–3 18.4 16.48 6–3 43.92 18.76 

1–7 9.01 10.50 4–6 2.24 14.51 6–4 3.81 15.50 

2–1 2.91 19.03 4–10 22.31 15.47 7–1 8.38 16.22 

2–3 28.45 19.45 5–1 1.95 12.96 7–8 2.31 15.87 

2–5 16.01 14.91 5–2 11.89 17.45 8–7 5.31 12.08 

3–2 3.62 14.89 5–6 5.54 11.89 8–5 14.97 13.01 

3–4 15.16 13.38 6–5 7.69 16.87 8–9 16.38 14.71 

9–8 17.59 19.00 11–12 19.03 11.84 14–11 20.21 12.30 

9–6 26.46 13.69 12–11 3.07 13.68 14–13 6.55 18.44 

9–10 44.44 11.11 12–9 4.57 16.26 14–15 41.12 11.95 

10–4 3.70 17.80 12–21 43.67 17.80 14–17 18.71 12.26 

10–9 36.88 13.90 13–7 1.15 10.81 15–12 4.25 11.71 

10–25 36.27 12.42 13–14 20.90 19.29 15–14 6.45 12.28 

11–8 10.41 14.04 13–16 12.27 17.76 15–18 6.96 14.36 

15–26 23.40 10.96 17–20 39.53 14.87 20–19 3.27 13.11 

16–13 0.93 11.32 18–15 3.20 14.36 20–27 4.12 19.23 

16–17 1.32 19.42 18–17 6.30 14.47 21–12 5.16 14.30 

16–19 24.57 19.56 18–22 2.94 13.06 21–25 3.07 11.85 

17–14 31.83 15.75 19–16 24.63 15.09 22–18 11.25 19.05 

17–16 45.03 10.60 19–20 0.16 15.11 1–5 14.65 14.17 

17–18 4.53 12.35 20–17 28.84 18.18 3–6 9.01 10.50 

23–27 4.31 13.53 26–15 32.04 17.95 6–9 2.91 19.03 

24–22 20.35 18.21 26–24 15.76 16.44 7–13 28.45 19.45 

24–23 0.56 10.15 26–25 3.03 13.79 9–12 16.01 14.91 

24–26 12.09 10.43 27–20 13.92 18.12 8–11 3.62 14.89 

25–10 6.38 11.69 27–23 3.42 15.33 11–14 15.17 13.38 

25–21 30.74 16.49 22–24 8.99 13.51 12–15 17.59 19.00 

25–26 7.24 17.32 23–24 12.05 19.39 5–8 14.97 13.69 

Link  ta    a  Link   ta a  Link  ta a  
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4.2. Optimal results and analysis 

 

To analyse the influences of various driver trade-offs among different objectives on the results, 

four weighting conditions are considered in the numerical example. Table 5 lists the relative 

importance among the objectives under each weighting condition.  

 

                Table 5  

Relative importance of the objectives under four weighting conditions. 

Weighting  conditions  Relative importance of the objectives 

Condition 1 , ,C U C T U T    

Condition 2    .   ' , ' , 'C U C T U T    

Condition 3 ' , ' , 'T U T C U C    

Condition 4 ' , ' , 'T C T U C U    

 

Given the relative importance of the objectives, the weighting coefficient of each objective under 

1–2 12.21 2.50 4–3 16.05 2.64 6–3 18.41 3.00 

1–7 9.78 1.73 4–6 13.41 2.40 6–4 14.31 2.58 

2–1 18.69 3.04 4–10 14.29 2.57 7–1 15.03 2.69 

2–3 19.05 3.11 5–1 11.65 2.20 7–8 13.79 2.78 

2–5 14.06 2.44 5–2 16.82 2.82 8–7 10.96 2.03 

3–2 13.58 2.50 5–6 11.58 1.90 8–5 12.81 2.08 

3–4 13.73 2.10 6–5 15.16 2.86 8–9 13.08 2.52 

9–8 17.56 3.15 11–12 11.83 1.88 14–11 11.00 2.10 

9–6 12.40 2.31 12–11 11.93 2.39 14–13 16.83 3.09 

9–10 11.85 1.73 12–9 14.11 2.85 14–15 12.52 1.86 

10–4 17.48 2.85 12–21 17.36 2.86 14–17 12.05 1.96 

10–9 13.90 2.20 13–7 10.64 1.73 15–12 10.22 2.04 

10–25 12.36 1.97 13–14 19.78 3.03 15–14 12.35 1.94 

11–8 13.15 2.31 13–16 17.03 2.88 15–18 13.33 2.38 

15–26 10.27 1.80 17–20 15.33 2.33 20–19 12.75 2.11 

16–13 11.16 1.81 18–15 14.04 2.30 20–27 16.54 3.40 

16–17 18.60 3.15 18–17 12.99 2.46 21–12 12.78 2.44 

16–19 17.46 3.34 18–22 12.84 2.09 21–-25 10.94 1.97 

17–14 16.54 2.46 19–16 15.35 2.38 22–18 17.67 3.16 

17–16 10.22 1.71 19–20 13.96 2.50 1–5 12.21 2.50 

17–18 11.01 2.11 20–17 16.96 3.00 3–6 9.78 1.73 

23–27 12.71 2.22 26–15 17.11 2.92 6–9 18.69 3.04 

24–22 16.73 3.03 26–24 15.51 2.69 7–13 19.05 3.11 

24–23 9.77 1.64 26–25 12.00 2.40 9–12 14.06 2.44 

24–26 9.71 1.72 27–20 17.23 2.95 8–11 13.58 2.50 

25–10 10.07 2.06 27–23 13.74 2.61 11–14 13.73 2.10 

25–21 16.02 2.65 22–24 13.88 2.12 12–15 17.57 3.15 

25–26 15.96 2.88 23–24 19.39 3.08 5–8 12.81 2.08 
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the four weighting conditions can be obtained using Eqs. (29)–(31). When the linear membership 

function of each objective is combined, as shown in Eq. (28), the MOP is transformed into a model 

with a single objective function, i.e. Eq. (32), which comprehensively considers three objectives. The 

GA is designed to solve the problem. The given parameters of the GA are population size (50) and 

generation (100). The generation gap value is 0.9, which is a parameter for the selection operation. The 

generation gap value represents the proportion of the selected chromosomes in the population size. It is 

used to determine the number of chromosomes that are selected for intercross and mutation operations. 

The probabilities of intercrossing and mutation are 0.9 and 0.05, respectively. The results under 

different p values are compared using Eq. (36), and the optimal results of each weighting condition are 

presented in Table 6. 

 

Table 6 

Solutions of the numerical example under four weighting conditions. 

Weighting conditions Values of p   T (min) U (kWh) C ($) 

Condition 1 2p   562.00 57.82 22.68 

Condition 2 1p   489.85 53.41 24.27  

Condition 3 p   677.37 54.71 21.13 

Condition 4 2p   525.95 53.37 23.25  

 

Table 7 lists the optimal routes under the solutions of each weighting condition. For each 

solution, the optimal route sequences from departure points to charging stations and from 

charging stations to destinations are determined based on the Assumption 1 as mentioned in 

Section 2.1. When determining the a of each link, the routes with minimum energy 

consumption can be obtained using a shortest path algorithm, such as Djistra algorithm 

(Dijkstra, 1959), and the values of a are regarded as the weight of link a. After 

determining the optimal route sequences and corresponding energy consumption values, the 

model that is comprised of Eq. (32) and Eqs. (22)-(27) is solved with the GA and the optimal 

charging stations for the target BEVs are obtained. The serial number of the optimal charging 

stations is recorded in the chromosomes of the optimal solutions, which is marked as “charging” 

in Table 7.  

 

Table 7 

Optimal routes of the numerical example under four weighting conditions. 

Weighting

conditions  

Departure points 

of target BEVs  

               Routes  

Condition 1 1 1 5 6 4(charging)   10
 

6 6 4(charging) 10 25  
 

7 7 8(charging) 11 14 15   
 

11 11 12(charging) 15 18 22   
 

16 16 17 20 27(charging) 23   
 

24 24 26(charging) 24 23 27 20    
 

Condition 2 1 1 5 6 4(charging) 10   
 

6 6 4(charging) 10 25  
 

7 7 8(charging) 11 14 15   
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11 11 12(charging) 15 18 22   
 

16 16 17 20 27(charging) 23   
 

24 24 26(charging) 24 23 27 20    
 

Condition 3 1 1 7 8(charging) 9 10   
 

6 6 4(charging) 10 25  
 

7 7 8(charging) 11 14 15   
 

11 11 12(charging) 15 18 22   
 

16 16 13 14 15 26(charging) 24 23     
 

24 24 23 27(charging) 20  
 

Condition 4 1 1 7 8(charging) 9 10   
 

6 6 4(charging) 10 25  
 

7 7 8(charging) 11 14 15   
 

11 11 12(charging) 15 18 22   
 

16 16 17 20 27(charging) 23   
 

24 24 23 27(charging) 20  
 

     

The Pareto curves are determined based on the solutions of the numerical example under 

the four weighting conditions to explore the influences of various driver trade-offs among 

different objectives on each objective. Fig. 5 presents the travel times for the numerical example 

under each weighting condition and the corresponding cumulative percentages. For travel times, 

the solution for Condition 2 holds the minimum value and that for Condition 3 holds the 

maximum value. The gap between the minimum and maximum values is 187.52 min. Moreover, 

the cumulative percentages indicate that the travel time under Condition 3 accounts for 30%; 

however, the travel times under Conditions 1, 2 and 4 exhibit moderate changes in degree. 

 

                Fig. 5. Pareto curve of travel times under four weighting conditions. 

     

The energy consumption of the numerical example under each weighting condition and the 

corresponding cumulative percentages are shown in Fig. 6. The gap between the minimum and 

maximum values of energy consumption is 4.45 kW. The solution for Condition 4 holds the 

minimum value and that for Condition 1 holds the maximum value. Moreover, the cumulative 
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percentages indicate that the energy consumption under the four weighting conditions exhibits a 

moderate degree of change. 

 

Fig. 6. Pareto curve of energy consumption under four weighting conditions. 

 

Fig. 7 compares the charging costs of the numerical example under each weighting 

condition and the corresponding cumulative percentages. For charging costs, the solution for 

Condition 3 holds the minimum value and that for Condition 2 holds the maximum value. The 

gap between the minimum and maximum values is $3.14. Moreover, the cumulative 

percentages indicate that charging costs under the four weighting conditions exhibit a moderate 

degree of change. 

 

Fig. 7. Pareto curve of charging costs under four weighting conditions. 

 

4.3. Analysis of GA parameter and convergence test 
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The results of the optimal route choices with multiple objectives for the numerical example show 

that the GA can be applied to solve the proposed model. For the GA, generation is an important 

parameter. Experiences show that a large generation tends to yield good results. Therefore, GA 

generation is tested in this section. In the numerical example, four weighting conditions are considered, 

and GA generation is set to 100. Through comparative analysis, the optimal results of Condition 1 are 

obtained under the objective function with p=2, as shown in Eq. (34). For Condition 2, the optimal 

results are obtained under the objective function with p=1, as shown in Eq. (33). For Condition 3, the 

optimal results are obtained under the objective function with p= , as shown in Eq. (35). The optimal 

results of Condition 4 are obtained under the objective function with p=2. Let K denote GA generation. 

The values of the optimal objective functions under each weighting condition for each parameter K are 

presented in Table 8.  

 

Table 8 

Different objective values under four weighting conditions that correspond to varying GA generations. 

Weighting 

conditions 

Values of p  K = 0   K = 20   K = 40   K = 60 K = 80  K = 100 

Condition 1  2p       0   0.4129   0.4503   0.4536 0.4536   0.4536 

Condition 2     1p   0   0.5147   0.7455   0.8817 0.8817   0.8817 

Condition 3   . p    0   0.2686   0.2855   0.3189 0.3189   0.3189 

Condition 4 . 2p   0   0.4693   0.5176   0.5304 0.5304   0.5304 

 

The test for GA generation demonstrates that generation K = 60 results in a better solution. When 

K is larger than 60, the solution is constant. Moreover, a convergence test of the values of the optimal 

objective functions under each weighting condition is implemented to further test the efficiency of the 

GA solution in solving the proposed model in the numerical example. Fig. 8 presents the convergence 

processes of the values of the optimal objective functions under the four weighting conditions.  

 
               Condition 1 (p=2)                          Condition 2 (p=1)  
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   Condition 3 (p= )                          Condition 4 (p=2) 

Fig. 8. Convergence test of the GA for the optimal objective functions under four weighting conditions. 

 

    We conclude that the GA demonstrates good efficiency for the problem based on the numerical 

example, and thus, is a feasible algorithm to solve the proposed model (Fig. 8). 

 

5. Conclusions 

 

The route choice problem in the travelling and charging of multiple BEVs is investigated in this 

study. A multi-objective optimisation model is proposed to explore the route choice problem in multiple 

BEVs by considering the limited driving range and charging behaviour of BEVs. The model has three 

objective functions, namely, minimising travel time, energy consumption and charging cost. Travel 

time includes queuing, charging and driving times. Moreover, the relation between ECPK and driving 

speed is formulated based on the data from BEVs operating in Beijing, which can be used to determine 

the energy consumption when a BEV traverses each link in a road network. Charging cost consists of 

electricity cost, service cost and parking fee. FPA and FPR are adopted to transform the three objective 

functions into a single objective function, which comprehensively considers the three optimisation 

objectives. The trade-offs among different travelling cost components for BEV drivers are considered 

in the transformed model. A GA is designed to obtain the optimal solution. Moreover, a numerical 

example is presented to demonstrate the model and solution algorithm, and four conditions of driver 

trade-offs among the different objectives are considered in the numerical example. The optimal choices 

under each condition for the target BEVs involved in the numerical example are determined. In 

addition, the influences of various driver trade-offs among different objectives on each objective value 

are explored via Pareto curves, and the effectiveness of the GA is verified through a convergence test. 

Notably, the average charging amount of BEVs (excluding the target BEVs) is assumed based on 

BEV driving and charging experiences and is set as a fixed value in the model. However, the 

assumption overlooks the potential special conditions in charging BEVs. Therefore, built upon the 

proposed model, the dynamic charging process of BEVs will be further investigated in a future research 

based on substantial data, and the queuing time estimation of the target BEVs is projected to become 

increasingly accurate. Moreover, the assumption about the number of chargers in a charging station is 

not considered in this study. The assumption may make the model different, because it is related to the 

assumption about the capacity of a charging station, charging time and queuing time. In a future 

research, the assumption about the number of chargers in a charging station will be considered and its 

relations to the capacity of a charging station, charging time and queuing time will be explored to 

further investigate the problem of route choices for the travelling and charging of BEVs. 
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