
Transportation Research Part E 97 (2017) 22–37
Contents lists available at ScienceDirect

Transportation Research Part E

journal homepage: www.elsevier .com/locate / t re
Bi-objective programming approach for solving the metro
timetable optimization problem with dwell time uncertainty
http://dx.doi.org/10.1016/j.tre.2016.10.012
1366-5545/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Hum, Kowloon, H
E-mail address: anthony.chen@usu.edu (A. Chen).
Xin Yang a,b, Anthony Chen b,c,⇑, Bin Ning a, Tao Tang a

a State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
bDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong
cKey Laboratory of Road and Traffic Engineering, Tongji University, Shanghai 201804, China

a r t i c l e i n f o
Article history:
Received 3 September 2015
Received in revised form 28 October 2016
Accepted 30 October 2016

Keywords:
Metro systems
Timetable optimization
Energy consumption
Bi-objective
a b s t r a c t

For optimization of timetables in metro systems with regular cyclic operation, this paper
develops a bi-objective programming approach addressed to minimization of net energy
consumption and total travel time with provision for dwell time uncertainty. Firstly, we
formulate the bi-objective timetable optimization problem as an expected value model
with speed profile control. Secondly, we use the e-constraint method within a genetic algo-
rithm framework to determine the Pareto optimal solutions. Finally, numerical examples
based on the real-life operation data from the Beijing Metro Yizhuang Line are presented
in order to illustrate the practicability and effectiveness of the approach developed in
the paper.
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1. Introduction

1.1. Motivation

Due to their high reliability, large passenger capacity and environmental friendliness, metro systems have played an
important role in many metropolitan cities (Jin et al., 2014; Yang et al., 2016a). Metro systems and metro timetables in par-
ticular have been a widely studied topic in recent years. The construction of a metro timetable includes scheduling the arri-
val and departure times of a set of trains at each station, and defining the operating speed profile of trains on each section.
Speed profiles and travel times have substantial impacts of different kinds - on operational efficiency, on the convenience of
passengers and on levels of pollutant emissions. For this reason, it is appropriate to treat timetable optimization as a multi-
objective decision problem. Energy consumption and travel time are two important indices for evaluating the effectiveness
of a timetable. The former is required by the operating companies and benefits the environment, and the latter is of more
concern to passengers. In addition, metro train delays often occur at busy stations due to delays caused by intermittent pas-
senger crowding, especially during the peak hours. Therefore, the dwell time uncertainty should not be ignored in the time-
table optimization problem.
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1.2. Literature review

The literature on train scheduling can be categorized as to the types of schedule involved, namely cyclic or acyclic. Cyclic
timetables are mainly applied to passenger railways such as metro, and acyclic timetables are often used for freight railways.
For cyclic timetables, Peeters (2003) provided a good overview for the relevant studies before 2003, and discussed their
advantages. Kroon et al. (2008) made a stochastic improvement of cyclic timetables by considering the random disturbances
in real-world operations. Heydar et al. (2013) developed a mixed integer programming model to minimize both the length of
the dispatching cycle and the total dwell time. For acyclic timetables, the early optimization models were summarized in a
survey by Cordeau et al. (1998). In 2002, Caprara et al. proposed a graph theoretic formulation for the train timetabling prob-
lem using a directed acyclic multigraph. Cacchiani et al. (2010), on the other hand, studied the acyclic train timetabling prob-
lem and analyzed the existing optimization models. Because the present research is concerned with cyclic scheduling, the
remainder of this review is concerned (except where otherwise stated) with literature on the cyclic case.

In recent years, timetable optimization models have been developed with a variety of criteria, including capacity (Abril
et al., 2008), transport demand (Kuo et al., 2010; Canca et al., 2014), robustness (Cacchiani and Toth, 2012; Burdett and
Kozan, 2014), delay time (Liebchen et al., 2010; Corman et al., 2012b), overlapping time (Yang et al., 2013), energy consump-
tion (Li and Lo, 2014a,b), passenger waiting time (Niu et al., 2015), and utilization of regenerative energy (Yang et al., 2015a).

Yang et al. (2015a) focused on optimizing the dwell time at each station to improve the utilization of regenerative energy,
where the running time and speed profile on each section were considered as constant parameters. With those assumptions,
the total tractive energy consumption is also a constant parameter. It may be noted that the main differences between the
present research and that of Yang et al. (2015a) are: (a) the decision variables in the present research are speed profiles and
running times instead of dwell times; and (b) the present research adopts minimization of travel time as an objective, along-
side efficiency of energy utilization.

Because different stakeholders with different interests are involved, it is natural to treat timetable optimization as a
multi-objective decision problem. For example, Higgins et al. (1996) proposed a nonlinear mixed-integer programming
model to minimize the delay time and the train operation cost, and solved the integer program using a branch-and-
bound procedure. Ghoseiri et al. (2004) developed an optimization model to minimize the fuel consumption cost and the
total passenger time using the e-constraint method to find a set of non-dominated solutions that forms the Pareto frontier.
Yang et al. (2009) developed an expected value programming model to minimize the delay time and the total passenger
time, in which the number of passengers boarding/alighting the train at each station is considered as a fuzzy variable.
Corman et al. (2012a) considered the minimization of the consecutive delays between trains and the maximization of the
total value of satisfied connections to develop a bi-objective conflict detection and resolution problem.

Li et al. (2013) developed a multi-objective train scheduling model for minimizing the energy, the carbon emission cost
and the total passenger time using a fuzzy mathematical programming method to find the optimal solution. Sun et al. (2014)
developed a multi-objective optimization model to consider the average travel time, the energy consumption and the user
satisfaction and designed a genetic algorithm to solve the model. Yang et al. (2014) developed a bi-objective integer pro-
gramming model with headway time and dwell time control to increase the utilization of regenerative braking energy
and, simultaneously, to shorten the passenger waiting time. On the other hand, Yang et al. (2015b) developed a bi-
objective optimization method to determine timetables and speed profiles applying an adaptive genetic algorithm with
an optimal train control algorithm to find the optimal solution. Xu et al. (2015) developed a multi-objective timetable opti-
mization model to consider both energy efficiency and service quality for metro systems.

Overall, many studies have considered multiple objectives in the timetable optimization problem, but only a few studies
(Li and Yang, 2013; Wu et al., 2015) consider the uncertain factors of the real-world operations in determining the metro
timetable. This paper contributes to the current literature by developing a bi-objective programming approach that explicitly
considers the dwell time uncertainty in the timetable optimization problem for minimizing both net energy consumption
and total travel time. The main contributions of this paper are as follows:

� We consider the uncertain dwell time and formulate the timetable optimization problem as a bi-objective expected value
model.
� We use the e-constraint method within a genetic algorithm framework to obtain the Pareto optimal solutions and deter-
mine three optimal timetables suitable for different real-world operation cases.
� We present numerical examples based on the real-world operation data from the Beijing Metro Yizhuang Line to illustrate
the practicability of the model as well as the effectiveness of the solution procedure.
1.3. Paper structure

The remainder of the paper is organized as follows. In Section 2, we formulate a bi-objective expected value model to
determine the optimal timetable. In Section 3, we design a genetic algorithm combined with the e-constraint method to solve
the developed bi-objective expected value model. In Section 4, two numerical examples based on the real-world data from
the Beijing Metro Yizhuang Line are presented. Finally, conclusions are given in Section 5.
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2. Model formulation

In this section, we formulate the timetable optimization problem as a bi-objective expected value model to reduce both
net energy consumption and total travel time under dwell time uncertainty. Net energy consumption is the difference
between the total required tractive energy and the total utilization of regenerative braking energy. Total travel time is
the time taken for a train to complete the trip from the starting station to the terminal station.

The metro system considered here is cyclic and regular in operation and linear in configuration, comprising paired tracks
and turnaround loops at each end. The analysis is focused on a single track, with traffic in one direction only, which is suf-
ficient in general to provide a complete timetable specification for the cyclic and regular case studied here (Higgins et al.,
1996). Every train stops at all stations (i.e., there are no skip-stop or express services). Typically, the headway is a design
variable related with passenger demand and train capacity, but it takes a constant value during a fixed operation period such
as peak hours or off-peak hours; here, headway is assumed constant for simplified planning purposes. Dwell time is treated
as comprising a constant base value plus a non-negative stochastic increment; dwell time and dwell time variability are dif-
ferent at different stations but are constant for all trains at a given station; dwell time is assumed to be no greater than head-
way; and the same speed profile is assumed for all trains on the same section, but it is different for different sections. Note
these assumptions preclude collisions between successive trains, thus making sidings for passing trains unnecessary.
Another point worth noting is that a higher total travel time in the line implies a higher cycle time (i.e., the time needed
to complete a loop in the line). If the headway is fixed, the number of trains attending the line increases. Consequently,
the total energy consumption in the line when trains are following a timetable design with long cycle times also increases.
The best solution in terms of energy consumption considering all the line cannot be obtained by minimizing only the energy
consumption of one train, because this can produce an increment in the needed fleet size. Therefore, the global solution must
balance both total energy consumption and the fleet size in order to achieve the best timetable design. Further assumptions
are set out in Section 2.2 below.

2.1. Notations

Notations used throughout the paper are listed as follows and all boldface letters denote the corresponding vectors. All
variables are assumed to be integer numbers.

2.3.1. Parameters
i
 train index, i ¼ 1;2; . . . ; I

n
 station index, n ¼ 1;2; . . . ;N

m
 train mass, which is assumed as constant for all trains and at all times

h
 time headway, which is assumed as constant throughout the system

sðn;nþ1Þ
 length of section (n, n + 1)

lðn;nþ1Þ
 lower bound of running time on section (n, n + 1)

uðn;nþ1Þ
 upper bound of running time on section (n, n + 1)

t1n
 current planned dwell time at station n

t2n
 maximum dwell time at station n

y
 possible value of dwell time,y 2 ½t1n; t2n�; y 2 Z
f a
 maximum tractive force

f b
 maximum braking force

r
 basic running resistance

g
 additional running resistance caused by gradient and curve

g1
 conversion efficiency of the train traction system (i.e., traction electrical energy from electricity to mechanical

energy)

g2
 conversion efficiency of the train braking system (i.e., conversion efficiency from mechanical energy to

electrical energy)

b
 transmission loss coefficient on regenerative braking energy
2.3.2. Stochastic variables
nn
 dwell time at station n
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2.3.3. Decision variables
xðn;nþ1Þ
 running time on section (n, n + 1)
2.3.4. Intermediate variables
ain
 arrival time of train i at station n

din
 departure time of train i from station n

cin
 switching time from accelerating phase to coasting phase for train i on section (n, n + 1)

bin
 switching time from coasting phase to braking phase for train i on section (n, n + 1)

vcn
 speed at switching point from accelerating phase to coasting phase on section (n, n + 1)

vbn
 speed at switching point from coasting phase to braking phase on section (n, n + 1)
For simplicity, we denote the decision variables as x ¼ fxðn;nþ1Þ j n ¼ 1;2; . . . ;N � 1g and the stochastic variables as
n ¼ fnn j n ¼ 1;2; . . . ;Ng. We set the time that the first train arrives at the starting station at time zero (i.e., a11 ¼ 0). For i
(1 6 i 6 I), the arrival time and departure time of train i at station n can be specified as follows:
ain ¼
hði� 1Þ; if n ¼ 1;

hði� 1Þ þ
Xn�1
k¼1
ðnk þ xðk;kþ1ÞÞ; if n ¼ 2;3; . . . ;N:

8><
>: ð1Þ

din ¼
hði� 1Þ þ n1; if n ¼ 1;

hði� 1Þ þ
Xn�1
k¼1
ðnk þ xðk;kþ1ÞÞ þ nn; if n ¼ 2;3; . . . ;N:

8><
>: ð2Þ
Note that h(i � 1) in Eqs. (1) and (2) denotes the arrival time of train i at station 1.

2.2. Model assumptions

According to the operation characteristics of metro systems, we formulate the model based on the following assumptions.

(a) Train mass, maximum tractive force, maximum braking force, basic running resistance and additional running resis-
tance are considered as constants.

(b) The regenerative energy is fed back into the overhead contact line and can be immediately utilized to accelerate adja-
cent trains in the same direction. As shown in Fig. 1a, the regenerative energy from braking train i can be utilized to
accelerate trains i + 1 and i � 1. If the feedback energy cannot be used immediately, it will be wasted by heating resis-
tors installed on the overhead contact line.

(c) The conversion efficiencies of the train’s traction system (from electrical energy to mechanical energy) and braking
system (from mechanical energy to electrical energy) are assumed as constants. Based on the assumption b), the
regenerative energy is only transmitted between adjacent trains. Therefore, the transmission distance is generally
not too long, and the transmission loss coefficient on regenerative energy is also assumed as a constant.

(d) For the busy stations, trains usually have uncertain departure delays. We use t1n and t2n to denote the current planned
dwell time and the maximum dwell time with delays, respectively. If station n is a busy station, the probability density
function (PDF) of the stochastic dwell time nn is shown in Fig. 2, and formulated as
pðnn ¼ yÞ ¼ ð�2yþ 2t2n=½ðt2n � t1n þ 1Þðt2n � t1nÞ�Þ; if y 2 ½t1n; t2n�; y 2 Z;

0; otherwise:

�
ð3Þ
Remark 1. According to the historical data from the Beijing Metro Yizhuang line, we assume the PDF of the dwell time as a
triangular distribution. Besides, the stochastic component is nonnegative that is a delay due to heavier passenger traffic than
was allowed for in the basic dwell time. Other distributions can also be considered. In our experiments, its impact on the
model formulation and solution algorithm is minimal.
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2.3. Objective functions

We consider net energy consumption and total travel time as two objective functions in the model. Before we formulate
the two objective functions, we first describe the speed profile formulation for a given section.

Based on the optimal train control theory (Howlett, 2000; Howlett et al., 2009; Albrecht et al., 2013), the energy-efficient
speed profile for trains within a given section typically consists of four phases: maximum acceleration, cruising, coasting,
and maximum braking. The present research, however, is directed at metro networks in which the travel distances are rel-
atively short, with no cruising phase: this leaves three phases, namely maximum acceleration, coasting and maximum brak-
ing phases (Howlett and Pudney, 1995; Bocharnikov et al., 2010; Su et al., 2013).

Given a section (n, n + 1) and according to the train motion equation, the speed profile for train i is
v inðtÞ ¼
ðf a � r � gÞðt � dinÞ=m; if din 6 t < cin;

vcn � ðr þ gÞðt � cinÞ=m; if cin 6 t < bin;

vbn � ðf b þ r þ gÞðt � binÞ=m; if bin 6 t < aiðnþ1Þ;

8><
>: ð4Þ
where the first row denotes the maximum accelerating phase, the second row denotes the coasting phase, and the third row
denotes the maximum braking phase. Note that v inðtÞ is determined by decision variables x and stochastic variables n. The
switching speeds vcn and vbn are determined as follows:
vcn ¼ ðf a � r � gÞðcin � dinÞ=m;

vbn ¼ ðf a � r � gÞðcin � dinÞ=m� ðr þ gÞðbin � cinÞ=m:

�
ð5Þ
The switching times cin and bin should satisfy the following equations:
vbn � ðf b þ r þ gÞðaiðnþ1Þ � binÞ=m ¼ 0;
mv2

cn=2ðf a � r � gÞ þmðv2
cn � v2

bn
Þ=2ðr þ gÞ þmv2

bn
=2ðf b þ r þ gÞ ¼ sðn;nþ1Þ;

(
ð6Þ
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where the first equation denotes that the speed of train i should reduce to zero when it arrives at station n + 1, and the sec-
ond equation denotes that the speed profile should satisfy the travel distance constraint. Eqs. (4) and (5) imply that the inter-
mediate variables vcn , vbn , cin and bin can be expressed in terms of the arrival time ain, departure time din, and given
parameters.

2.3.1. Total travel time
The total travel time of train i for completing a trip from station 1 to station N is formulated as
Tiðx; nÞ ¼
XN�1
n¼1
ðnn þ xðn;nþ1ÞÞ: ð7Þ
Total travel time is thus explicitly dependent on both the decision variables and the stochastic variables.

2.3.2. Net energy consumption
Generally speaking, the metro train needs to use energy from the power supply network for increasing the train speed

during the accelerating phase, and it regenerates energy during the braking phase. There is no tractive energy consumed
or regenerated during the coasting phase or the dwell time period at stations.

Firstly, we calculate the total required tractive energy for train i throughout its whole journey (i.e., the total travel time
spent by passengers in the system). For each i (1 6 i 6 I) and n (1 6 n 6 N), the required tractive energy for accelerating train
i at station n and section (n, n + 1) at time t is
Finðx; n; tÞ ¼
f av inðx; n; tÞ=g1; if din 6 t < cin;

0; if ain 6 t < din [ cin 6 t < aiðnþ1Þ;

(
ð8Þ
where the first condition denotes the accelerating phase on section (n, n + 1), and the second condition denotes the dwell
time at station n and the coasting and braking phases on section (n, n + 1). Note that the tractive energy used here is equiv-
alent to electrical required power in kW � h. Hence, the total required tractive energy for train i throughout its whole journey
is
JiFðx; nÞ ¼
XaiN
t¼di1

Finðx; n; tÞ: ð9Þ
Furthermore, we calculate the total utilization of regenerative energy from train i throughout its whole journey. For each i
(1 6 i 6 I) and n (1 6 n 6 N), the energy regenerated from train i at station n and section (n, n + 1) at time t is
Binðx; n; tÞ ¼
0; if ain 6 t < din [ din 6 t < bin;

f bv inðx; n; tÞg2; if bin 6 t < aiðnþ1Þ;

(
ð10Þ
where the first condition denotes the dwell time at station n and the accelerating and coasting phases on section (n, n + 1),
and the second condition denotes the braking phase on section (n, n + 1). For simplicity, we define
Ts ¼ f½bin; aiðnþ1ÞÞ \ ½dðiþ1Þn; cðiþ1ÞnÞg [ f½bin; aiðnþ1ÞÞ \ ½dði�1Þðnþ1Þ; cði�1Þðnþ1ÞÞg; ð11Þ

where Ts denotes the total overlapping time between train i and its adjacent trains i + 1 and i � 1; ½bin; aiðnþ1ÞÞ \ ½dðiþ1Þn; cðiþ1ÞnÞ
denotes the overlapping time between braking train i on section (n, n + 1) and accelerating train i + 1 on section (n, n + 1) (see
Fig. 1b for an illustration); and ½bin; aiðnþ1ÞÞ \ ½dði�1Þðnþ1Þ; cði�1Þðnþ1ÞÞ denotes the overlapping time between braking train i on sec-
tion (n, n + 1) and accelerating train i � 1 on section (n + 1, n + 2) (see Fig. 1c for an illustration). Only during the total over-
lapping time, the regenerative energy from train i can be utilized by trains i + 1 or i � 1. Therefore, the total utilization of
regenerative energy from train i throughout its whole journey is
JiBðx; nÞ ¼
XN�2
n¼1

X
t2Ts

minfBinðx; n; tÞð1� bÞ; ½Fðiþ1Þnðx; n; tÞ þ Fði�1Þðnþ1Þðx; n; tÞ�g

þ
X
t2Ts

minfBiðN�1Þðx; n; tÞð1� bÞ; Fðiþ1ÞðN�1Þðx; n; tÞg; ð12Þ
which contains two terms: (1) the first term denotes that the utilization of regenerative braking energy of train i from
Section 1 to section (N � 2, N � 1); and (2) the second term denotes that the utilization of regenerative braking energy of
train i on section (N � 1, N), where train i � 1 has already arrived at the destination station N, and is therefore not included.
In both terms, the minimum operator is used to select between the regenerative braking energy and the tractive energy
required to accelerate the train. If the tractive energy is larger than the regenerative braking energy, it means all the
regenerative braking energy is being used and additional energy is needed to accelerate the adjacent trains according to
the implemented speed profiles. On the other hand, if the tractive energy is smaller than the regenerative energy, it means
the regenerative braking energy is more than sufficient to accelerate the adjacent trains, and the remaining regenerative
braking energy not used will be wasted by heating resistors installed on the overhead contact lines. To help visualizing
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the process of computing the utilization of regenerative energy, a pictorial framework is provided in Fig. 3. Finally, the net
energy consumption for train i throughout its whole journey is
Jiðx; nÞ ¼ JiFðx; nÞ � JiBðx; nÞ: ð13Þ

The minimum operators in JiBðx; nÞmake the net energy consumption equation Jiðx; nÞ neither convex nor continuous (i.e.,

nonlinear and non-smooth). Therefore, it is difficult to evaluate it using traditional optimization methods.

2.4. Optimization model

In the timetable optimization problem, we want to minimize the total travel time as well as the net energy consumption.
Since the two quantities Tiðx; nÞ and Jiðx; nÞ to be minimized include stochastic variables, we use the expected value criterion
to minimize their average values. Therefore, we formulate the timetable optimization problem as a bi-objective expected
value model as follows:
min E½Tiðx; nÞ�; E½Jiðx; nÞ�
s:t: lðn;nþ1Þ 6 xðn;nþ1Þ 6 uðn;nþ1Þ; n ¼ 1;2; . . . ;N � 1;

xðn;nþ1Þ 2 Z; n ¼ 1;2; . . . ;N � 1;
t1n 6 nn 6 t2n; n ¼ 1;2; . . . ;N � 1;
vcn ¼ ðf a � r � gÞðcin � dinÞ=m; n ¼ 1;2; . . . ;N � 1;
vbn ¼ ðf a � r � gÞðcin � dinÞ=m� ðr þ gÞðbin � cinÞ=m; n ¼ 1;2; . . . ;N � 1;
vbn � ðf b þ r þ gÞðaiðnþ1Þ � binÞ=m ¼ 0; n ¼ 1;2; . . . ;N � 1;
mv2

cn=2ðf a � r � gÞ þmðv2
cn � v2

bn
Þ=2ðr þ gÞ þmv2

bn
=2ðf b þ r þ gÞ ¼ sðn;nþ1Þ; n ¼ 1;2; . . . ;N � 1:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð14Þ
The first set of constraints ensures that the running time on each section should satisfy its upper and lower bound con-
straints. The second set of constraints ensures that the decision variables are all integer according to the engineering require-
ments. The third set of constraints ensures that the stochastic dwell time is valued within an interval. The remaining
constraints ensure the proper speed profile for each section.

Solving the bi-objective expected value model presents a number of challenges; in particular: (1) one of the objectives
Jiðx; nÞ in the model is nonconvex and discontinuous (i.e., nonlinear and non-smooth); (2) the model has multiple Pareto
optimal solutions (i.e., there does not exist a single solution that simultaneously optimizes both objectives); and (3) it is nec-
essary to repeat a number of times to solve the stochastic model for obtaining the expected value. Therefore, it is difficult to
find the optimal solution using the classical optimization methods.

3. Solution algorithm

As explained in Section 2.4, the developed bi-objective expected value model is complicated. This section designs a
genetic algorithm (GA) combined with the e-constraint method to find the Pareto optimal solutions. We apply the
e-constraint method to model (14), to obtain the following modified formulation
Fig. 3. Computing framework for utilizing the regenerative energy.
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min E½Jiðx; nÞ�
s:t: E½Tiðx; nÞ� 6 e;

lðn;nþ1Þ 6 xðn;nþ1Þ 6 uðn;nþ1Þ; n ¼ 1;2; . . . ;N � 1;
xðn;nþ1Þ 2 Z; n ¼ 1;2; . . . ;N � 1;
t1n 6 nn 6 t2n; n ¼ 1;2; . . . ;N � 1;
vcn ¼ ðf a � r � gÞðcin � dinÞ=m; n ¼ 1;2; . . . ;N � 1;
vbn ¼ ðf a � r � gÞðcin � dinÞ=m� ðr þ gÞðbin � cinÞ=m; n ¼ 1;2; . . . ;N � 1;
vbn � ðf b þ r þ gÞðaiðnþ1Þ � binÞ=m ¼ 0; n ¼ 1;2; . . . ;N � 1;
mv2

cn=2ðf a � r � gÞ þmðv2
cn � v2

bn
Þ=2ðr þ gÞ þmv2

bn
=2ðf b þ r þ gÞ ¼ sðn;nþ1Þ; n ¼ 1;2; . . . ;N � 1;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð15Þ
where e denotes the upper bound of the expected value of Ti. By repeatedly relaxing the value of e, and re-optimizing the
expected value of Ji, the e-constraint method generates a set of (Ti, Ji) points that form the Pareto frontier.

GA is a stochastic search method firstly initiated by Holland (1975) for solving complex optimization problems. Due to
their extensive generality and practical applicability, GAs have been widely applied to different transportation problems,
including stochastic network design (Chen and Xu, 2012; Xu et al., 2013), vehicle routing under uncertainty
(Allahviranloo et al., 2014), intermodal transportation planning and management (Assadipour et al., 2015), liner hub-and-
spoke shipping network design (Zheng et al., 2015), and metro optimization (Niu and Zhou, 2013; Yang et al., 2013, 2014,
2015a, 2015b, 2016b; Xu et al., 2015).

A GA usually starts with an initial set of randomly generated feasible solutions, which are encoded as chromosomes called
a population. A new population of chromosomes is generated following the evaluation, selection, crossover and mutation
operations. The GA terminates after a given number of iterations of the above steps. The detailed procedure of the genetic
algorithm is described below.
3.1. Representation structure

As shown in Fig. 4, we define a chromosome c ¼ fcn j n ¼ 1;2; . . . ;N � 1g to represent the set of decision variables
x ¼ fxðn;nþ1Þ j n ¼ 1;2; . . . ;N � 1g. Each gene cn in the chromosome represents a decision variable xðn;nþ1Þ.
3.2. Initialization

Define an integer number pop_size as the population size. For each n (1 6 n 6 N � 1), randomly initialize an integer num-
ber xðn;nþ1Þ 2 ½lðn;nþ1Þ; uðn;nþ1Þ� as a gene cn, thus we obtain an initial chromosome c ¼ ðc1; c2; . . . ; cN�1Þ. Check whether this initial
chromosome satisfies the e-constraint E½Tðx; nÞ� 6 e. If so, this initial chromosome is a feasible chromosome. Otherwise,
delete it and regenerate a new one. In the same way, generate pop_size feasible chromosomes as the initial population
fc1; c2; . . . ; cpop sizeg.
3.3. Evaluation function

Evaluation function is used to assign a probability pi of reproduction to each chromosome ci ði ¼ 1;2; . . . ; pop sizeÞ so that
its likelihood of being selected is proportional to its fitness relative to the other chromosomes in the population. First, we
reorder the chromosomes from good to bad according the expected value of the net energy consumption. Then for each

a 2 ð0;1Þ, the evaluation function is defined as EvalðciÞ ¼ að1� aÞi�1; i ¼ 1;2; . . . ; pop size.
x(1,2)
Decision variables x

……

Chromosome c
c1 c2 cN-1……

x(2,3) x(N-1,N)

Fig. 4. Structure of a chromosome.
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3.4. Selection operation

The selection of chromosomes is done by spinning the roulette wheel which is a fitness-proportional selection. Each time
one chromosome is selected for a new child population. Performing this process pop_size times, the next generation can be
obtained. Define p0 ¼ 0, and calculate the cumulative probability pi for each chromosome
pi ¼
Xi

j¼1
EvalðcjÞ; i ¼ 1;2; . . . ;pop size: ð16Þ
The detailed selection procedure is described as follows:

Step 1. Set j ¼ 1.
Step 2. Randomly generate a real number r 2 ð0; ppop size�.
Step 3. Select the chromosome ci such that r 2 ðpi�1; pi�.
Step 4. If j ¼ pop size, stop; otherwise, set j ¼ jþ 1 and go to step 2.

3.5. Crossover operation

Define a parameter Pc to denote the probability of crossover operation. Randomly generate a real number r 2 ½0;1�. If
r < Pc , select two chromosomes ci ¼ ðc1i ; c2i ; . . . ; cN�1i Þ and ciþ1 ¼ ðc1iþ1; c2iþ1; . . . ; cN�1iþ1 Þ as the parents. Randomly generate an

integer number k from f1;2; . . . ;N � 1g, thus ci and ciþ1 produce two offsprings as cx ¼ ðc1i ; . . . ; cki ; ckþ1iþ1 ; . . . ; c
N�1
iþ1 Þ and

cy ¼ ðc1iþ1; . . . ; ckiþ1; ckþ1i ; . . . ; cN�1i Þ (see Fig. 5). Check whether cx and cy are feasible (i.e., satisfying the constraints in model
(15)). Take them to replace their parents. If r P Pc , keep ci and ciþ1.

3.6. Mutation operation

Define a parameter Pm to denote the probability of mutation operation. Select a chromosome ci as the parent for mutation
and randomly generate a real number s 2 ½0;1�. If s < Pm, randomly select a gene of the selected chromosome and randomly
update this gene within the corresponding upper and lower bounds of the decision variable. Thus, the selected chromosome
is also updated. Check whether the new chromosome is feasible (i.e., satisfying the constraints in model (15)). Take it to
replace the parental chromosome ci. If s P Pm, keep ci.

3.7. General process

A flowchart of the GA-based solution procedure developed in the present research is provided in Fig. 6, and summarized
as follows:

Step 1. Initialize parameters: population size pop_size, crossover probability pc, mutation probability pm, and max_gener-
ation. Set generation index i = 1.
Step 2. Initialize pop_size feasible chromosomes as the initial population.
Step 3. Calculate the expected values of the evaluation function for all chromosomes based on the stochastic simulation.
Step 3.1. Set U = 0.
Step 3.2. Generate the stochastic variable n according to the probability density function given in equation (3).
Step 3.3. For each n, calculate the objective function of model (15), and denote as EðnÞ;=.
Step 3.4. Set U  U þ EðnÞ.
Step 3.5. Repeat step 3.2 to step 3.4 for Y times, where Y is a sufficiently large number.
Step 3.6. Return U/Y is the expected value of the evaluation function.

Step 4. Select the chromosomes by spinning the roulette wheel.
Step 5. Produce the next generation through the crossover and mutation operations.
Step 6. Check the new generation and ensure it to satisfy the e-constraint.
Step 7. If i =max_generation, return the best found solution. Otherwise, set i = i + 1, and go to step 3.
ci ci+1

＋

cx cy
＋

Fig. 5. Crossover operation.



1. Define maximum number of generations max_generation (index: i)
2. Define population size pop_size (index: j)
3. Generate initial population

i = 1

j = 1

Calculate the expected
values based on the
stochastic simulation

j > pop_size i > max_generation

GA module
1. Representation
2. Selection
3. Crossover
4. Mutation

Report final solutions

i = i + 1

j = j + 1

Yes

Yes

No No

Satisfy the
-constraint ?

Yes

No

Fig. 6. Flowchart of the GA combined with the e-constraint solution procedure.
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4. Numerical experiments

In this section, two numerical examples based on the real-world operation data from the Beijing Metro Yizhuang Line are
presented to illustrate the practicability of the developed model as well as the effectiveness of the solution method. The Yiz-
huang Line connects the downtown of Beijing and the Yizhuang Economic Development Zone, which covers a length of
22.73 km and consists of 14 stations from Songjiazhuang station to Yizhuang station (see Fig. 7).

We obtained the current operation data of the Beijing Metro Yizhuang Line from the Beijing Mass Transit Railway Oper-
ation Corporation Limited (Zhang, 2014). The current planned dwell time at each station, and the current planned running
Songjiazhuang

Xiaocun
Xiaohongmen

Yizhuangqiao

Wenhuayuan
Wanyuan

Rongjing

Rongchang

Tongjinan
Jinghai

Ciqunan
Ciqu

Yizhuang

Jiugong

Fengtai
District

Chaoyang
District

Daxing
District

Tongzhou
District

Downtown of
Beijing

Yizhuang Economic
Development Zone

Fig. 7. Illustration of the Beijing Metro Yizhuang Line. Source: Zhang, 2014.
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time, bounds of running time and length of each section are provided in Table 1. There are three busy stations (i.e., Wen-
huayuan, Rongchang and Tongjinan) in the Yizhuang Line that are frequently delayed by over-crowded passengers (Li
and Yang, 2013), and the maximum delay is 10 s. Therefore, for station n = {6,9,10}, the PDF of the stochastic dwell time
nn is
Table 1
Current

Stati

Song
Xiao
Xiao
Jiugo
Yizh
Wen
Wan
Rong
Rong
Tong
Jingh
Ciqu
Ciqu
Yizh
pðnn ¼ yÞ ¼ ð�yþ 40Þ=55; if y ¼ f30; 31; . . . ; 40g
0; otherwise:

�
ð17Þ
The remaining parameters are listed in Table 2.
Based on the provided operation data, the expected values of total travel time and net energy consumption for the current

planned timetable are 2086 s and 176.5292 kW�h.
In what follows, Example 1 analyzes the influence of GA parameters on the results to determine their reasonable values.

Example 2 provides the Pareto optimal solutions and shows three representative optimal timetables suitable for different
real-world operations. Example 3 makes a comparison between the developed bi-objective expected value model and the
bi-objective deterministic model (i.e., without considering the dwell time uncertainty). The solution procedure is performed
on a personal computer with processor frequency of 2.4 GHz and memory size of 8 GB.

Example 1. This example analyzes the influence of GA parameters (i.e., pc, pm, pop_size and max_generation) on the results,
such that we can obtain their reasonable values to conduct the following experiments. For model (15), we set e = 2086 (the
expected value of total travel time with the current planned timetable). The results with respect to pop_size and
max_generation are shown in Fig. 8. Based on the results, we take pop_size = 60 and max_generation = 100 in the following
experiments.

Next, we perform the GA using different combinations of pc and pm. The results and the computation time are recorded in
Table 3. The 7th result with the minimum best found value and a lower computation time. Therefore, we take pc = 0.6 and
pm = 0.15 as the GA parameter values for further experiments.

Example 2. This example provides the Pareto optimal solutions of the developed bi-objective programming approach. By
separately maximizing and minimizing the total travel time objective function, we obtain the expected value of maximum
total travel time Tmax = 2151 s and the expected value of minimum total travel time Tmin = 2021 s. Thus for model (15), we
vary the e value from 2021 to 2151, and set the interval as 10. By repeatedly performing the solution procedure with
pop_size = 60, max_generation = 100, pc = 0.6 and pm = 0.15, we obtain 14 Pareto solutions provided in Table 4 and the Pareto
frontier shown in Fig. 9.

The Pareto frontier denotes the set of solutions from which it is impossible to make any reduction on the total energy
consumption without increasing the total travel time or vice versa. These obtained Pareto solutions can provide useful guid-
ance to the metro operators for making changes to achieve a balance tradeoff between the two objectives. Fig. 9 shows three
representative solutions that are suitable for applying to different real-world operations. We discuss these three solutions as
follows.

For solution 1, the corresponding optimal timetable is provided in Table 5. The obtained expected values of total travel
time and net energy consumption are 2021 s and 212.45 kW�h, respectively. The results show that the expected total travel
time of solution 1 is reduced by (2086–2021)/2086 = 3.12% in comparison to the current planned timetable. However, the
cost of the expected net energy consumption is increased by (212.45–176.53)/176.53 = 20.35%. From the view point of metro
decision-makers, this solution is suitable for operations during peak hours, as it can reduce travel time for more passengers
albeit the percentage of travel time reduction is small compared to the percentage of net energy consumption increase.
planned dwell time at each station, and the current planned running time, bounds of running time and length of each section.

on Dwell time (s) Running time (s) Lower bound (s) Upper bound (s) Length (m)

jiazhuang (SJZ) 30 190 185 195 2631
cun (XC) 30 108 103 113 1275
hongmen (XHM) 30 157 152 162 2366
ng (JG) 30 135 130 140 1982
uangqiao (YZQ) 35 90 85 95 993
huayuan (WHY) 30 114 109 119 1538
yuan (WY) 30 103 98 108 1280
jing (RJ) 30 104 99 109 1354
chang (RC) 30 164 159 169 2338
jinan (TJN) 30 150 145 155 2265
ai (JH) 30 140 135 145 2086
nan (CQN) 35 102 97 107 1286
(CQ) 45 105 100 110 1334
uang (YZ) –



Table 2
Value and unit of some parameters.

Parameter N m h fa fb r g g1 g2 b
Value 14 311,800 90 315,000 258,000 2000 500 0.7 0.8 0.05
Unit – kg s N N N N – – –
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Selected convergence point

Fig. 8. Results with respect to pop_size and max_generation.

Table 3
Results with different combinations of pc and pm.

No. pc pm Best found value Computation time (s)

1 0.5 0.05 165.62 1760
2 0.5 0.10 165.81 1772
3 0.5 0.15 164.25 1756
4 0.5 0.20 165.82 1751
5 0.6 0.05 165.26 1766
6 0.6 0.10 164.19 1750
7 0.6 0.15 164.01 1736
8 0.6 0.20 164.55 1733
9 0.7 0.05 165.09 1749
10 0.7 0.10 165.91 1756
11 0.7 0.15 165.22 1739
12 0.7 0.20 164.31 1755
13 0.8 0.05 165.34 1731
14 0.8 0.10 164.97 1758
15 0.8 0.15 164.28 1746
16 0.8 0.20 164.63 1768
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For solution 2, the corresponding optimal timetable is provided in Table 6. The obtained expected values of total travel
time and net energy consumption are 2135 s and 156.65 kW�h, respectively. Compared with the current planned timetable,
the expected net energy consumption of this solution is reduced by (176.53–156.65)/176.53 = 11.26%, while the expected
total travel time of this solution is increased by (2135–2086)/2086 = 2.35%. For some big cities in China with heavy air pol-
lution such as Beijing, the government is vigorously promoting energy saving and emission reduction. Therefore, metro
decision-makers may choose this solution for operations during off-peak hours.

For solution 3, the corresponding optimal timetable is provided in Table 7. The obtained expected values of total travel
time and net energy consumption are 2071 s and 170.27 kW�h, respectively. The results reveal that the expected values of



Table 4
Pareto optimal results.

No. e Expected total travel time (s) Expected net energy consumption (kW�h)
1 2021 2021 212.45
2 2031 2031 199.96
3 2041 2041 190.22
4 2051 2051 182.14
5 2061 2061 177.73
6 2071 2071 170.27
7 2081 2081 167.75
8 2091 2091 161.66
9 2101 2101 157.77
10 2111 2111 156.69
11 2121 2121 156.66
12 2131 2131 156.65
13 2141 2135 156.65
14 2151 2135 156.65
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Fig. 9. Pareto frontier.
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the total travel time and net energy consumption of the optimal timetable can be reduced by (2086–2071)/2086 = 0.72% and
(176.53–170.27)/176.53 = 3.55% in comparison to the current planned timetable. Metro decision-makers can choose this
solution when they want a reduction of both total travel time and net energy consumption.

To show the differences among the optimal timetables of the above three solutions and the current planned timetable, we
present the four timetables with their expected values of total travel times and net energy consumptions in Fig. 10.

Example 3. This example makes a comparison between the bi-objective deterministic model (BDM, i.e., without considering
the dwell time uncertainty) and the developed bi-objective expected value model (BEVM) in this paper.

We assume the dwell time at each station as a deterministic parameter in the modified BEVM (i.e., model (15) modified
by the e-constraint method) to generate the modified BDM as
Table 5
Optima

Stati

Arriv
Depa
Stati
Arriv
Depa
l timetable of solution 1 for the Beijing Metro Yizhuang Line.

on SJZ XC XHM JG YZQ WHY WY

al time (s) 0 215 348 530 690 810 949
rture time (s) 30 245 378 560 725 840 979
on RJ RC TJN JH CQN CQ YZ
al time (s) 1077 1206 1395 1570 1735 1867 2012
rture time (s) 1107 1236 1425 1600 1770 1912 –



Table 6
Optimal timetable of solution 2 for the Beijing Metro Yizhuang Line.

Station SJZ XC XHM JG YZQ WHY WY

Arrival time (s) 0 224 364 556 725 855 996
Departure time (s) 30 254 394 586 760 885 1026
Station RJ RC TJN JH CQN CQ YZ
Arrival time (s) 1134 1272 1471 1656 1831 1973 2126
Departure time (s) 1164 1302 1501 1686 1866 2018 –

Table 7
Optimal timetable of solution 3 for the Beijing Metro Yizhuang Line.

Station SJZ XC XHM JG YZQ WHY WY

Arrival time (s) 0 215 349 535 698 821 962
Departure time (s) 30 245 379 565 733 851 992
Station RJ RC TJN JH CQN CQ YZ
Arrival time (s) 1096 1230 1422 1602 1771 1911 2062
Departure time (s) 1126 1260 1452 1632 1806 1956 –
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Fig. 10. Optimal timetables of three representative solutions in comparison with the current planned timetable.
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min JðxÞ
s:t: TðxÞ 6 e;

lðn;nþ1Þ 6 xðn;nþ1Þ 6 uðn;nþ1Þ; n ¼ 1;2; . . . ;N � 1;
xðn;nþ1Þ 2 Z; n ¼ 1;2; . . . ;N � 1;
vcn ¼ ðf a � r � gÞðcin � dinÞ=m; n ¼ 1;2; . . . ;N � 1;
vbn ¼ ðf a � r � gÞðcin � dinÞ=m� ðr þ gÞðbin � cinÞ=m; n ¼ 1;2; . . . ;N � 1;
vbn � ðf b þ r þ gÞðaiðnþ1Þ � binÞ=m ¼ 0; n ¼ 1;2; . . . ;N � 1;
mv2

cn=2ðf a � r � gÞ þmðv2
cn � v2

bn
Þ=2ðr þ gÞ þmv2

bn
=2ðf b þ r þ gÞ ¼ sðn;nþ1Þ; n ¼ 1;2; . . . ;N � 1:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð18Þ
The maximum and minimum total travel times of the BDM are calculated as 2142 s and 2012 s. By varying the e value
from 2012 to 2142 with an interval of 10, we can obtain 14 Pareto optimal solutions of the BDM. Similarly, we can obtain
the expected values of the total travel time and net energy consumption of each Pareto optimal solution as shown in Fig. 11
in comparison with the Pareto frontier of the BEVM.

Fig. 11 shows that the Pareto frontier of the BDM is located in the upper-right in comparison with the Pareto frontier of
the BEVM. As we known, the closer the Pareto frontier gets to the lower-left corner (i.e., smaller expected value of net energy
consumption and total travel time) the better. Therefore, the results imply that the developed BEVM can achieve a better
performance than the BDM.
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5. Conclusion

The main contribution of this paper is to develop a bi-objective programming approach by taking the dwell time uncer-
tainty into consideration to determine the timetable for minimizing both net energy consumption and total travel time. The
e-constraint method combined with the genetic algorithm is designed to find the Pareto optimal solutions. Numerical exam-
ples based on the real-world operation data from the Beijing Metro Yizhuang Line are presented. The numerical results pro-
vide three representative optimal timetables suitable for real-world operations, which show that the maximum reductions
of total travel time and net energy consumption are 3.12% and 11.26%.

In real-world metro systems, there are many other uncertain operating conditions in the timetable optimization problem.
For example, the uncertainty of conversion efficiencies between electrical energy and mechanical energy is dependent on the
lower and upper limits of voltage in the catenary, the efficiency of vehicle hardware, and so on; the uncertainty of running
resistance is influenced by the weather and temperature variations; and the uncertainty of train mass is decided by the
dynamic and variable passenger flows. These multiple uncertainties can be studied in future research.

In addition to the travel time and energy consumption, the metro timetable optimization problem may involve other
objectives, such as capacity, robustness, delay time, and passenger waiting time. We will extend this work to a more com-
prehensive set of objective functions to account for different preferences from different stakeholders. Another direction for
further research would be to consider variability of passenger demand over the course of a day. This might involve provision
for changing timetables (e.g. between peak and off-peak periods), or as an extension of the present model, providing for the
minimum planned dwell time to vary between trains or over time.
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