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Abstract—Traffic speed prediction is a long-standing and ~ mostly concerned with traffic flow and congestion predic-
critically important topic in the area of Intelligent Trans - tions [4], [5]. Traffic speed prediction, therefore, is Iséh

portation Systems (ITS). Recent years have witnessed the ,nen proplem in the deep-learning era, with two notable
encouraging potentials of deep neural networks for real- .
challenges as follows:

life applications of various domains. Traffic speed predidbn,
however, is still in its initial stage without making full use « How to characterize the latent interactions of road seg-

of spatio-temporal traffic |nformat|(_)n. In light of t_hls, in this ments in traffic speeds so as to improve the predictive
paper, we propose a deep learning method with an Error- f fad | network?
feedback Recurrent Convolutional Neural Network structure performance of a deep neural network:

(eRCNN) for continuous traffic speed prediction. By integrding « How to model the abrupt changes of traffic speeds in
the spatio-temporal traffic speeds of contiguous road segmés case of emerging events such as morning peaks and
as an input matrix, eRCNN explicitly leverages the implicit traffic accidents?

correlations among nearby segments to improve the predicte . ) . . .
accuracy. By further introducing separate error feedback These indeed motivate our study. Specifically, in this

neurons to the recurrent layer, eRCNN learns from predictian paper, we propose a deep learning method using an Error-
errors so as to meet predictive challenges rising from abrup  feedback Recurrent Convolutional Neural Network (eRC-
traffic events such as morning peaks and traffic accidents. NN) for continuous traffic speed prediction. The novel

Extensive experiments on real-life speed data of taxis ruring tributi f tud >ed foll
on the 2nd and 3rd ring roads of Beijing city demonstrate the contributions or our study are summarized as Tollows.

strong predictive power of eRCNN in comparison to some state First, we take the matrix containing the spatio-temporal
of-the-art competitors. The necessity of weight pre-traimg  traffic speeds of contiguous road segments as the input of
using a transfer learning notion has also been testified. M@  cRCNN. By this means, the complicated interactions of
interestingly, we design a novel influence function based on traffic speeds among nearby road segments can be captured

the deep learning model, and showcase how to leverage it to . . o
recognize the congestion sources of the ring roads in Beijin by eRCNN naturally without elaborative characterization,

) ) . which is crucial to the high-accuracy prediction of eRCNN.

Keywords Intelligent transportation systems; Deep leaming; Second, we introduce separate error-feedback neurons to
Spatio-temporal; Time series prediction; Convolutional reural ! .
network: the recurrent layer of eRCNN, for the purpose of capturing
the prediction errors from the output layer. This empowers
eRCNN the ability to model the abrupt changes in traffic
speeds due to some emerging traffic events like the morning

Traffic speed prediction, as a sub-direction of traffic peaks and traffic accidents.
prediction in the area of Intelligent Transportation Syste Third, we put forward a novel weight pre-training method,
(ITS), has long been regarded as a critically importantwhich adopts a transfer-learning notion by clustering Eimi
way for decision making in transportation navigation, &lav yet contiguous road segments into a group for the generation
scheduling, and traffic management. Traditional models, inof a same set of initial weights. This “sharing scheme” not
cluding auto-regression methods [1] and supervised legrni only helps to reduce the learning process of eRCNN for
methods such as support vector regression [2] and artificiadvery road segment, but also improves the chance of finding
neural networks [3], all treat traffic speed prediction asbetter optimal solutions.

a time-series forecasting problem, and thus run into the Finally, we design a novel influence function based on
bottleneck gradually. the deep learning model, and illustrate how to leverage it to
In recent years, with the rapid development of deeprecognize the congestion sources of the ring roads in Beijin
learning techniques, more and more researchers in ITS begdio the best of our knowledge, we are among the earliest to
to adopt deep neural networks for high-accuracy trafficexplore how to learn road congestion sources from deep

prediction. The rich studies along this line, however, ardearning models.

I. INTRODUCTION



downstream of the segmentat the timet¢, and the row
vectorv; . contains traffic speed data of the segmefrom
time ¢ to ¢t — n. In this way, the input matriXV contains

all the speed information that is spatially and temporally
adjacent to the variate to be predicted, i1€,441.

B. The CNN-based Feature Extracting
In the eRCNN model, we adopt a CNN-based network

0000000

Error

put Matrix:~ Comvolution  Pooling  feedback  Ohiput structure to extract features from the spatio-temporaltinp
matrix. The CNN structure contains a convolution layer and

Figure 1. The framework of the eRCNN model. a pooling layer, and then we introduce the two layers in this
subsection.

1) The Convolution Layer:The convolution layer is a
Extensive experiments on real-life speed data of taxigore part of the CNN model [6]. The convolution layer con-
running on the 2nd and 3rd ring roads of Beijing city demon-nects the spatio-temporal input matrix with several traiea
strate the strong predictive power of eRCNN, even withfilters, with each being ax i weight matrix. We define the
the presence of state-of-the-art competitors. The inotusi i-th filter aSWI(cC)' The convolution layer uses tﬁwé@
of spatio-temporal information of contiguous segments, th tg zigzag scan the input matrix to calculate a convolution
introduction of error-feedback neurons to the recurrey@iia  neuron matrix. Thép, ¢) element of the convolution neuron

and the weight pre-training of similar segments, all give amatrix generated by the filter is calculated by
positive boost to the high accuracy of eRCNN.

Il. THE ERCNN FRAMEWORK cp? = sigmoid <bk +Y° Zwi’ym””’“y) ;@

Fig. 1 shows the framework of the eRCNN model con- 2=0y=0
taining five network layers, including the input laydr),  where b, is a bias for the filterk, w;¥ is the (z,y)
the convolution layer I{c), the pooling layer Iip), the  glement ofW]gC)' mPTTa+Y is the (p + z, q + y) element
error-feedback recurrent layeLdr), and the output layer of the spatio-temporal matri%/. More details about the

(Lo). The function of the input layer is to organize the jmplementation of the CNN'’s convolution layer could be
original traffic speed data as a spatio-temporal input matri found in [7].

which can be processed by the CNN layers of eRCNN. The 2) The Pooling Layer: The pooling layer is another
function of the convolution layer and the pooling layer is important component of the CNN model, which is used
to extract features from the spatio-temporal input matrix.to reduce the dimension of the convolution neuron matrix
The function of the error-feedback recurrent layer is tothrough an average down sampling method. In the proposed
compensate prediction errors using predicting results 0BRCNN model, the pooling layer divides the convolution
previous periods. The output layer uses a modified rectifietheuron matrix intoj x j disjoint regions, and uses the
linear unit to generate the predictions of traffic speeds.  averages of each region to represent the characteristieof t
convolution neurons in the region. Through the processing
) ) o of the pooling layer, the dimension of the spatio-temporal
In order to exploit spatial and temporal correlation infor- ., -+iv is reduced as about 1/ §) of its original size. The

mation, we construct a spatio-temporal input matrix in theOutlout of the pooling layer is a feature vector generated

input layer. Given a road segmestwe define the traffic  {hrough vectoring the down sampled convolution neuron
speed of the segmeatat the timet asv, ;. When we use  atrix. which is denoted ap.

the proposed model to predict ;;1, the spatio-temporal
matrix for the input layer is defined as C. The Error-Feedback Recurrent Layer

- An important characteristic of traffic speed data is the

A. The Spatio-Temporal Input Matrix

Us—mt Us—mi—1 *** Us—m,i—n abrupt change of speed within a short time period. For

: : : example, during the beginning 30 minutes of morning peaks,

Us—1t Us—14—1 °* Us—lt-n the traffic speed of the Beijing ring roads could drop

V= ves Vg t—1 Usten |- (1) from 70km/h to 30km/h; while after a rear-end collision
Vstit Ustli—1 -°  Ustlt—n traffic accident, the traffic speed could drop from 50km/h to

. 20km/h. In general, it is hard to predict the traffic condigo

with these abrupt speed changes using traditional neural

[Ustm,¢ Vstmt—1 *° Vstm,t—n] network structures. In this way, we introduce an error-

The column vectow.; contains traffic speed data of all feedback recurrent layer to improve prediction perforneanc
the segments in a range that segments upstream and of our model in the above scenarios.



In the error-feedback recurrent layer, a group of neuronsvherew(©%) | w(©F) andb(©) are the weights and bias of
are connected with the feature veciothat is generated by the output layer. In the output layer, we adopts a modified
the pooling layer. Thé-th neuronry, is fully connected with  Re LU function as the activation function, which is defined
all the elements op through a sigmoid activation function, as
ie., 0 if <0
r,iR) = sigmoid (w,gR)p + b,iR)) , 3) olz)y=<z if 0<z<l1. (9)

1 if z>1
Wherew,(cR) is the connection weight vector for the neuron ) o
- andb™ is the bias. The output_of Eq. (8) can pe _regarded as alinear comblnatlon
' k of the traffic speed prediction (generated by the input of

In the traditional RNN model [8]; still needs to be con- current step) and the error compensation (generated b
nected with the hidden layer neurons of the last prediction b P 9 y

steps, i.e. previous steps). o
T Because the output of Eq. (9) is in the range of [0, 1],
r (1) = sigmoid (Wgﬂp F Wt — 1) + b}@) ., (4 we re-scale the traffic speed of road segments into the same
range. According to the actual situation of urban traffic, we
where r(t — 1) is the neuron vector of the — 1 step, adopt the following reflect function to re-scale the traffic
and wy, is the corresponding wight vector. However, this speed data:
network structure does not consider the prediction errors,

which is indeed useful in the scenarios of abrupt speed 1 if >80 km/h
changes. Specifically, if we have the information about the ~— ¥(z) = ¢ 1— 32 if z €[10,80] km/h.  (10)
prediction errors at the previous steps, we can design a 0 if x <10 km/h

model to compensate the prediction error at the current ste;?n fact, in order to keep the input and output at the same

In order to overcome the limitations of RNN, we introduce scale. the traffic soeeds in the inbut spatio-temporal matri
a group of error-feedback neurons in the recurrent layer. ' P put sp P

The value of thek-th error-feedback neuroro,iE) at thet V are also re-scaled by the function in Eq. (10)
prediction step is defined as: [1l. NETWORK TRAINING
TI(CE) (t) = sigmoid (W,(CE)e(ﬁ — 1)+ bl(cE)) : (5) A. Parameters Training

5 5 The parameters need to be trained in the eRCNN model
whereb,g )is a bias,w,(f )is a weight needs to train. The include the weight matrix seW(“) and the bias sek(©)

vectore(t — 1) in Eq. (5) is a prediction error vector: of the convolution layer, the weight vector set$™, w(E)
B and the bias set&'?, b(¥) of the error feedback recurrent
e(t) =yt —1) —olt = 1),...y(t =) —olt = 1)], () layer, the weight vectow(©) = [w(©®); w(©F)] and the
wherey(t — 1) is the real traffic speed at the step- 1, and  biasb(©) of the output layer. For the sake of simplicity, we
o(t — 1) is the predicted speed at the step (. introduced to represent all the parameters.

The output of the error-feedback recurrent layer is a

S - (C) wB) w(E) (0) p(C) p(R) p(E) (0)
combination of the regular neurons® and the error- 9_{W y W, WL, W, B B 6L b }

feedback neurons'®), i.e., o _ G
(R). (E) The parameter training is achieved by a mini-batch s-
r= [t (7)  tochastic gradient descent (SGD) method. For a road seg-

r[‘nent, the objective of parameters training is to minimize th

In the error-feedback recurrent layer, we do not connec o .
qguared error for all the training samples, i.e.,

the input of the current step and the error-feedback of thé
previous steps together in the same group of neurons as in I — lz( 0 )2
traditional RNN. On the contrary, the input is connected 2 Yk = Ok

into separate neuron groups. This is because the current . . -
input and the recurrent input in our model have different!n the mini-batch SGD, the training samples are divided

(12)
k

characteristics. into several mini-batches. For a mini-batch, we calcullage t
partial derivatives ofL. with respect to all the parameters,
D. The Output Layer and then update the parameters using the following equation
Considering the error-feedback recurrent layer, the dutpu 0 — 6 — aa_L, (13)
neuronsr is then used as an input, and the output layer 90
generates a final prediction value as whereq is an adjustable learning rate.

(OR) (R (OB)(B) . +(O) The partial derivatives of. to the parameters are calcu-
o=0 (W r 4+ w O b ) ; (8) lated by the error back propagation (BP) algorithm. For a



mini-batch withm samples, the partial derivatives bfwith
respect to the output layer parameters”) andb(©) are

oL 1
WO —m > dO @) e,

oL 1 o
0 = m 210

whered(©)(t) is the error propagated from the output layer
at the prediction steg. For a given road segment, we

defineo(t) as the prediction output at the stepandy(t)
is the corresponding real traffic speed, and tHEW () is
calculated as

dO(t) =6 (ot)) (y(t) — o(t) = Y_wiPdP (1), (15)
k

where the functiord () is with a form of

o(x) = {(1)

In the second term of the Eq.(lS}}r,,(CE) is an inverted form
of the weight vectonw,(cE), ie.,

w5 = ), .. wl? 1),

fo<z<l

. 16
ifx=0o0r1 (16)

17)

Algorithm 1 The segments clustering algorithm.

Require: A segment sef = {s1, s2,..., s, that includes
m segments of a road. A Pearson correlation coefficient
thresholdP.
1: Initialization : The segment clustefl;, and: = 0.
2: while not all segments in the sét are clusterealo
3. sp < a segment that is not clustered.

4: H; {S()}, n < 1.
5. s, < asegment that is contiguous with the segments
in H;.
. while 1> Pearson(s,,s) > P do
7: H; + {H;, sz}, n+n+1.
8: sz < a segment that is contiguous with the seg-
ments inH;.

9: end while
10: 1<+ 1+ 1.
11: end while

12: Output: The segment clustet§y, Hy, ..., H;.

B. Pre-Training and Fine-Tuning eRCNN

Since a road is divided into several segments, different
segments may have different traffic speed variation pattern

anddECE) (t) is the error propagated from the prediction time Thus, we need to train special model parameters for each

t+1tot+1,ie.,

d P ) =[Pt +1),....d7 ¢+  @18)
For a given timet, d\” () is calculated as
E O OF E E

42 t) = 47 O P W -rPw). 29

Moreover, we calculate the partial derivativesioto the

segment. However, in the real situation, the training data f

a specific segment is limited in the speed samples. If the
training data is not enough, the eRCNN model may suffer
from over fitting problem. In order to prevent the over fitting
problem and take full advantages of the training data of all
the road segments, we develop an approach to cluster road
segments as several subsets, and use all the speed data of the
segments in the same subset to pre-train an eRCNN model.

weight parameters of the error-feedback recurrent layer as  Tpe clustering algorithm used here is a Pearson correlation

oL 1 (E)
=— ) d, " (t)e(t—1), (20)
i 2
and
oL 1 (R)
= d (t)p, (21)
6‘w,(€R) m zm: ’

whered,(f‘) at the timet is calculated as

@70 = d” Ou PO - o). @)

The partial derivatives to bias parameters for the error

feedback recurrent layer is calculated as

oL 1 (R)
=— > d;7(t).
ab,iR) m Z k

(23)

m

coefficient based algorithm. Using the Pearson correlation
coefficient as a similarity measurement, the clustering al-
gorithm is presented in Algorithm 1. To be more specific,
Algorithm 1 clusters road segments that are contiguous and
with Pearson correlation coefficients higher than a thriesho

as a same set. The segments in the same set share their traffic
speed as a pre-training data set. Through this approach, we
transfer knowledge of other segments into the model of a
certain segment.

_ Furthermore, using parameters of the pre-training model

as the initial values of the parameters, we further fine-tune
the eRCNN model for each segment by utilizing the local
spatio-temporal data. Specifically, we divide the 24 hours
of one day into seven time ranges, i.e., [0:00, 6:00], [6:00,
9:00], [9:00, 12:00], [12:00, 15:00], [15:00, 18:00], [D8;

The partial derivative of weight sé(“) and bias set 21:00], and [21:00, 0:00]. For a segment in a certain time
b(©) in the convolution layer is calculated according to range, we fine tune the special parameters by using the speed
the standard CNN BP algorithm [7], which will not be data of the segment in the given time range based on the
elaborated here. pre-trained model.
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Figure 2. Prediction performance on the 2nd ring road wittyimg period lengths (Scenario ).
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Figure 3. Prediction performance on the 3rd ring road wittyiva period lengths (Scenario ).

V. EXPERIMENTS Moving Average (ARIMA) [1]. 2) Support Vector Regres-
sion (SVR) [11]. 3) Stacked Auto Encoders (SAE) [5]. 4)
_ 1D Convolutional Neural Network (1D-CNN). The network
In our experiments, we tested eRCNN over two Verysiycture of the 1D-CNN is the same as the CNN part of
important roads in the Beijing city, i.e., the 2nd ring road eRCNN, but the input matrix reduces to the time series of
and the 3rd ring road. These two roads encircle the centghe traffic speeds of the segment to be predicted. 5) Con-
of Beijing. According to the Beijing Municipal Commission |ytional Neural Network (CNN). The network structure
of Transpon, the average traffic flow carried by the two of the CNN benchmark is the same as eRCNN, except the
roads goes beyond 200,000 cars every day, which occupigror feedback procedure is removed. Note that 1D-CNN is
about 10% of the total traffic flow in Beijing downtown area. ;seqd as benchmark to test the effectiveness of the spatio-
The length of the 2nd and 3rd ring roads are 32 and 48smporal input matrix for eRCNN, and CNN is used to test

km, respectively. We set the average length of each roaghe performance of the error feedback scheme of eRCNN.
segment to be 400 meters, which results in 80 and 122

road segments for the two roads. Moreover, the traffic speeff: ©verall Performance

of a road segment is collected from the GPS terminals of We compared the performance of eRCNN with the bench-
taxis driving on the segment [9], [10]. In the data collegtin mark methods in two different experimental scenarios. In
process, the traffic speed of a segment is updated everytbe first scenario, we predict the average traffic speed of a
minutes. The data set used in this experiment was collecteg@ad segment in a following period, with the length varying
from the 25 weekdays in November 2013. The data of thérom 5 to 30 minutes. We adopt three widely used metrics
first 20 weekdays were used as the training set, and th® evaluate the performance of prediction models, inclgdin

A. Data Description

remaining five days as the test set. Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and Root Mean Square Error (RMSE).
B. Benchmarks Fig. 2 and Fig. 3 show the comparative performances of

We Compared the performance of our model with the f0|_eRCNN and the benchmarks for the 2nd and 3rd ring roads,

lowing benchmarks methods: 1) Auto Regression Integrateéespectively. As shown in the figures, the prediction erfor o
eRCNN is obviously smaller than ARIMA, SVR, SAE, and

Lhttp://www.bjjtw.gov.cn/ 1D-CNN in terms of the three evaluation metrics. Although
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Figure 5. Prediction performance on the 3rd ring road wittyiva interval lengths (Scenario ).

the performance of CNN is comparable to eRCNN, theD. Performance for Individual Road Segment

prediction error is sti!l greater than eRCNN. Generally we To further demonstrate the advantages of eRCNN, we took
can see that the pred|ptlpn perfprm_ance becomes_t?ettt_er Wheclncloser look at the prediction errors of every road segments
the length of the prediction period increases. Intuitiyéhs with CNN, SAE and SVR as benchmarks. Fig. 6(a) shows

may be due to the fact that the traffic speed of a segmeno ¢omparative performances on each segment of the inner
becomes smoother when the average period length mcreasgﬁlg (in clockwise direction) of the 2nd ring road. In the

The results indicate that eRCNN can effectively extracty,heriment, the prediction period is set as 5 minutes and the
the spatio-temporal features from the traffic speed data Qf o4 is 0 minutes. As depicted in the figure, the predicti
contiguous road segments, and the introduction of the-erroly, . for gifferent segments indeed vary greatly. We can se
feedback recurrent layer is indeed positive for eRCNN. o4 for 4l the prediction methods, the predictability bét

In the second scenario, we aim to predict the traffic speedegment #30-#50 is better than other segments in general.
of a segment after a given time interval, with the intervalOn the contrast, the predictability of segment #7-#15, #20-
length varying from O to 50 minutes. Fig. 4 and Fig. 5 #25, and #65-#80 is much poorer.
show the prediction errors of eRCNN in comparison with  As shown in the figure, the performances of SAE and
the benchmarks for the 2nd and 3rd ring roads, respectivel5VR degrade severely for the low predictability segments,
As shown in the figures, eRCNN achieved the best perwhereas the performances of eRCNN and CNN remain
formances compared with other methods. Note that sincetable across all the segments. Fig. 6(b) shows the similar
the correlation between the traffic speed of two adjacengxperimental results for the inner ring of the 3rd ring road,
periods decreases as the interval increases, the predictigvith the same settings to the time period and interval. To
performances become worse with the increase of the intervaum up, the results in Fig. 6 indicate the robustness of
length. eRCNN empowered by the learning scheme from the spatio-

In summary, from the above experimental results, welemporal speed matrix of nearby segments.
find that eRCNN achieves the best performance compared N L
with the state-of-the-arts. The inclusion of spatio-tenapo E. Performance with Time Variation
information of contiguous segments and the error-feedback Here, we study the prediction performances of eRCNN in
neurons to the network structure is the key for success. different time intervals of a day with substantially diféet
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] To further demonstrate the statistical property of thererro

feedback scheme, Fig. 8 plots the cumulative distribution

functions of the absolute prediction error in the 19:00-

19:30 time period of all the testing days and all the road

segments for eRCNN and CNN, respectively. The prediction

period is 5-min and the intervals are 0-min and 20-min,

o
Q
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——CNN-0min

- - -eRCNN-20mi
===CNN-20min

N
£

Cumulative probability
o
D

o
N}

% 5 10 15 respectively. As shown in Fig. 8, the prediction error of
MAE (km/h) eRCNN is obviously smaller than CNN, which indicates
Figure 8. CDF of predictive error during 19:00-19:30. the great improvements from the error-feedback scheme in

eRCNN, especially when facing traffic fluctuations.

traffic conditions. We select a road segment located in the |n summary, the experimental results testified the effec-
inner loop of the 2nd ring road as the targeted sample, angiveness of introducing separate error-feedback neurons t
predict its traffic speeds during the time interval from 18:3 eRCNN when predicting traffic speeds with abrupt changes.
to 21:30 on November 24, 2013. The prediction period is
set as 5 minutes and the interval is set as 0. F. Performance with Weight Pre-Training

Fig. 7 demonstrates the real traffic speed and the predic- As discussed in Section IlI-B, we develop a pre-training
tion results from eRCNN and CNN. As can be seen frommethod by clustering the road segments. To evaluate the
Fig. 7, from 19:00 to 19:30, the traffic recovers from the effectiveness of this method, we compared the prediction re
last traffic jam of the night peak. While around 20:20, thesults of eRCNN under three conditions, i.e., predictiorhwit
traffic speed decreases again due to a small accident, and thee-training, prediction without pre-training, and pretain
traffic recovers to normal before 21:00. In general, thditraf with only pre-training, in the time period between 6:00 to
speed changes abruptly during both of the two periods21:00. We set the prediction period to 5-min and the interval
As can be seen from the figure, our proposed eRCNNo 0-min and 20-min, respectively.
successfully captures the abrupt changes in speeds and theAs shown in Fig. 9, the prediction results without pre-
curve of predictions exactly matches the real values dfi¢raf training and with only pre-training fluctuate drastical®ar-
speeds, while the CNN model does not effectively follow theticularly, during the morning peak (7:00-9:00) and evening



peak (17:00-19:00), the prediction errors for the two caseﬁ;j. According to Eg. (3), the complete form of the partial

are much higher than that of other time periods. Neverthederivative for a regular recurrent neuron is given by

less, the prediction results with pre-training remain lgtab (R)
i icti ortY Ry — 0y N 9Pk

across all the time ranges, and the prediction errors are =71 —r¥) .

significantly lower than the other two cases. This well ov k oV

demonstrates that eRCNN is greatly enhanced by the preye define the partial derivative vector with thé regular

training scheme even facing the drastic speed changesgdurifieyrons in the recurrent layer as

the morning and evening peaks.

(29)

.
V. IMPORTANCEANALYSIS FOR ROAD SEGMENTS orth) [37“51?') 87“%%)] (30)

In this section, we introduce a very useful application of oV | gV oV
our traffic speed prediction model: the importance analysii\ccording the Eq. (8), we obtain the partial derivative o th
for road segments. In order to explain the concept of segme’btutput variables to the input matrixV’ as
importance, we first give a formalized definition of the

influencebetween segments. For a segmgnthose traffic @ — 5(0) (OR) or(R) 31)
speed is influenced by the traffic speed of the segrjeme ov ov
define

vy = f(vr) (24) According to definition of tge input matri¥ in Eq. (1),
/ v the element (1,1) of% is 7=, which denotes the
where v; and v; are traffic speeds of segmentand j,  derivative of predicted speed of segmerat time¢ + 1 to
respectively. Based on the relations described by Eq. (24}he speed of the segmesnt- m at timet. According to the

we define theinfluenceof segmenti to segment; as the definition of segment influence, we approximately calculate

derivative ofv; to v;, i.e.,,V e >0 the influence of the segment— m to s at timet as
L df(u) o f(v) = flui —e) 2| 90s 441

k=
For the eRCNN model, the network structure is a functionW defi he ¢ ht " its infl
o = f(V), which models the relations between predicted e define thamportanceof the segmenk as its influence

speedo of a segment and real traffic spee¥sof its con- to all segments in the same road with it, i.e.,

tiguous segments. Because eRCNN achieved very accurate Importance,, = Z Zl’f +(s). (33)
prediction performance, we can usé to approximate raborill
the influence of the contiguous segments to the predicte . : — .

9 9 P gccordmg to this definition of segment importance, the seg-

segment.

The calculation ofg—{), is given as follows. According to
Eq. (2), in the convolution layer, the partial derivativetbé
element(p, ¢) in the neuron matrix for thé-th filter to the

ments with high importance have high influence to the traffic
speeds of other segments. These high important segments
could be considered as sources of traffic congestion.

input matrix V' is In order to verify the effectiveness of the above-mentioned
5P importance analysis method, we again adopt the 2nd and
8@ =1 - c’,;’q)W,(cC). (26)  3rd ring roads as the demonstrative examples. We use 5-

min period and 0-min interval prediction experiment result

In the pooling layer, the partial derivative of the pool autp o calculate the importance of the inner and outer loop
py’ to the matrixV is an average ofic;*/0V, i.e., segments of the two ring roads. The importance of the seg-
opid 1 & 2 pemn ments is demonstrated in the city map of Beijing as shown

Pr_ _ 2 Z k__ (27) in Fig. 10. Obviously, the high important road segments
ov 4 m=2i—1n=2j—1 oV are mostly located near the corners of the ring roads, for

poth of the outer and inner loops. This is possibly because

neurons: the regular neuron and the error-feedback neurqu.e etnhtrances and E?('LS ?f the ring :O?ﬁs are cotncctantra;ed
For the sake of reducing complexity, we ignore the influencd'€ar th€ corners, which aiso connect other important roads.

of error feedback neurons and only consider the regula‘*:Or exa;mple, thef rlﬁrtheast;em corr:ertofh'_thﬁ two ”?g Iroads
neurons. We define an intermediate variable as connects oné of the most important highways fo leave
Beijing and also the expressway of Beijing airport, the

Opk (R) 3ij northwest corner of the 3rd ring road connects with the
T J

The error-feedback recurrent layer contains two kinds o

ov Zhongguancun Street (The silicon valley of China), and the
northwest corner of the 2nd ring road connects with the

where wﬁf}k is the element ofw(™ that corresponds to North Railway Station. In a nutshell, the results explicitl
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Figure 10. The importance of segments in the 2nd and 3rd oads:

detect the key congestion source in the ring roads, which cathat traditional prediction approaches that treat traffitad
help the municipal administrators to make better decigion i streams as generic time series might fail to forecast traffic

urban planning and resolving the traffic congestion. during peak hours and in case of events, and proposed the
H-ARIMA+ method to incorporate historical traffic data
VI. RELATED WORK for traffic prediction. In [11], spatio-temporal trends wer

A widely used method for traffic speed prediction is introduced to the SVR model to facilitate large-scale teaffi
the autoregressive integrated moving average (ARIMA)SPeed prediction. In[24], a non-negative matrix factdrara
model [1]. After the birth of the BoxCJenkins time-series based latent space model was introduced to predict time-
analyzing method [12], many ARIMA based variants werevarying traffic in networked roads in a large spatial area.
proposed to improve the traffic predicting power [13], [14]. [25] proposed a tensor based model to predict travel-time

In recent years, great attention is being paid to superthrough exploiting spatio-temporal information.
vised learning methods for traffic prediction. Support vec- Summary:Despite of the abundant research in traffic
tor regression (SVR) and artificial neural networks (ANN) Prediction, to our best knowledge, our work is among
are the two kinds of particular interests. For instance, [2]the earliest to allow integrating both spatio-temporal and
proposed a SVR based method to predict traffic Speedgrediction—error information into deep neural networks fo
[15] proposed an online learning weighted support-vectofraffic speed prediction of high accuracy. Moreover, our
regression (OLWSVR) to predict short-term traffic flow. As study sheds light on how to learn road segment importance
to ANN, Ref. [3] applied artificial neural networks to predic from deep learning models.
the speeds on two-lane rural highways. [16] proposed a
fuzzy neural network to analyze road traffic. Other learn-
ing based methods include the distribution enhanced linear In this paper, we proposed a novel deep learning method
regression [17], the hidden Markov model based predictior¢alled eRCNN for traffic speed prediction of high accuracy.
method [18], and the Gaussian process-based method [19)n error-feedback recurrent convolutional neural netwisrk
The predictability of road traffic and congestion in urbancarefully designed so as to incorporate the spatio-tenhpora
areas is studied in [20]. speed information of contiguous road segments as well

With the booming of deep learning techniques [21], someas to perceive the prediction errors stemming from the
ITS researches begin to adopt deep neural network models adrupt fluctuations of traffic speeds. Experiments on real-
an effective traffic prediction tool. Ma et. al. [22] adopted Wworld traffic speed data of the ring roads of Beijing city
RNN-RBM model to predict congestion evolution in a large- demonstrate the advantages of eRCNN to the excellent
scale transportation network. [4] proposed a deep beliefompetitors. In particular, we illustrate how to explore th
network model with shared representation for traffic flowcongestion sources from eRCNN.
prediction, while [5] adopted a SAE model for this purpose.

To further enhance predictive performance, involving his-
torical and spatio-temporal information becomes a prargisi Dr. Jingyuan Wang was supported in part by NSFC
trend in traffic prediction. For instance, Ref. [23] claimed (61572059, 61332018), the Basic Science Research Program
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