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An electric vehicle routing problem with charging time and variable travel time is developed to address some operational issues
such as range limitation and charging demand. The model is solved by using genetic algorithm to obtain the routes, the vehicle
departure time at the depot, and the charging plan. Meanwhile, a dynamic Dijkstra algorithm is applied to find the shortest path
between any two adjacent nodes along the routes. To prevent the depletion of all battery power and ensure safe operation in transit,
electric vehicles with insufficient battery power can be repeatedly recharged at charging stations.The fluctuations in travel time are
implemented to reflect a dynamic traffic environment. In conclusion, a large and realistic case study with a road network in the
Beijing urban area is conducted to evaluate the model performance and the solution technology and analyze the results.

1. Introduction

With energy crisis and environmental pollution problem,
petroleum use and energy diversity have gained global inter-
est and raised public concern inmany countries. In [1], trans-
portation section has occupied 30% greenhouse gas (GHG)
in the United States. Therefore, the construction of efficient,
intensive, and low-carbon transportation systems has become
a controversial topic. Two major approaches to sustainable
transportation are being considered: renewable energy tech-
nologies and efficient transportation operations. As one way
of developing the renewable energy technologies, alternative
fuel vehicles (AFVs), such as hybrid vehicles (HVs), plug-
in hybrid electric vehicles (PHEVs), and electric vehicles
(EVs), have been manufactured to reduce vehicle emissions.
Reference [2] introduces the transition challenges of AFVs
in transportation systems from the viewpoints of consumer
choice, market growth, vehicle performance improvement,
and fuelling infrastructure. EVs that are totally powered by
onboard batteries have advantages over traditional vehicles
in zero energy emissions and environment protection. Refer-
ence [3] focuses on development opportunities, technological
problems, cost-effectiveness, and policy support to introduce
EVs and forecast future EV adoption trajectory within 10

years. With the increasing improvements in battery tech-
nologies and charging station construction, EVs are gaining
popularity and associated with many fields of transportation.

Recently, logistics is searching for a new technological
innovation to surpass the traditional distribution mode and
improve operational inefficiency. The combination of logis-
tics and EVs is consistent with the objective requirements of
sustainable transportation. In Beijing, under the leadership of
the government, 70 logistics EVs coming from four logistics
companies are applied in several distribution areas such
as express delivery and supermarket delivery. The related
problems such as the vehicle routing problem (VRP) are
being focused on. VRP, in which the multiple routes for a
fleet of vehicles are determined for a set of customers to
minimize the object value, is a classical problem amongmany
distribution problems. The combination of EVs and VRP is a
new extended VRP and is called the electric vehicle routing
problem (EVRP). Reference [4] considers some compre-
hensive constraints, such as time window, range constraint,
charging stations, and cargo weight, to propose an EVRP
model. However, the model merely considers static traffic.
The varying traffic conditions in a real road network may
cause battery power to be completely depleted while in tran-
sit. Reference [5] concentrates on the limited range of AFVs
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and the lack of refuelling stations to develop a green VRP
model with the objective of minimizing the total distance.
Reference [6] simultaneously combines the charging station
location problem with the EVRP to minimize the total costs,
including travel cost, charging cost, and location cost. In [7],
because of the limited range, EVs can be recharged at special
sites in transit and a charging EVRP model is given. Finally,
the average tour length is estimated.

In the EVRP, several subproblems such as the route
planning problem and the shortest path problem sometimes
need to be solved. Reference [8] uses the minimum time as
the object to develop three different types of traffic network
equilibrium models in terms of charging time and energy
consumption.The results prove that the entire traffic network
can achieve balance in the end and provide the optimal
routing selection. The paper integrates dynamic traffic with
routing choices for EVs. In [9], EVs are assumed to have a sig-
nificant amount of charging demand. To obtain a minimum-
cost path, a dynamic program method is applied to develop
the model, which is solved by two algorithms. Reference [10]
regards energy consumption as the link cost and applies the
classicDijkstra algorithm to obtain the shortest path in a large
network. Because the recuperate energy of EVs during the
deceleration phases or travel downhill produces link costs
less than zero, Johnson potential technology is employed to
transform negative energy caused by deceleration or braking.
Similarly, [11] also considers energy consumption as the link
cost to propose an optimal EV routing model with the least
energy consumption. The model is solved by A∗ algorithm;
the results are incorporated into a vehicle navigation system.
Considering the uncertain characteristics of traffic time, [12]
presents an energy model and uses a combination of robust
optimization, A∗ algorithm, and Lagrangian relaxation to
obtain the EV shortest path. Reference [13] considers the
reachable range and location problem to give EV aid routes in
four cases. In [14], the shortest path problem with a different
number of battery recharge stations for EVs is explored.

In contrast to these previous papers, this paper primarily
considers distribution features, EV features, and dynamic
traffic environment to investigate the EVRP.Detailed descrip-
tions are as follows.

(1) As one of the major obstacles in EV development, the
limited range must be considered. An effective route must
satisfy the condition that the vehicle has adequate range to
arrive at each node. Range anxiety, which causes the drivers
to fear that the battery power will be depleted before the
vehicle reaches the node, attaches significance to the range
constraint. From the perspective of the limited range, the
problem is an extension of the distance-constrained VRP
(DCVRP) that is proposed by [15]. The DCVRP requires
that the total distance travelled by the vehicle is less than or
equal to the maximum possible distance. Different advanced
algorithms exist to solve the DCVRP models that are devel-
oped by different objective functions. For example, [16]
considers two possible objective functions (total distance
and the number of vehicles) to model the DCVRP and
analyzes the relationship between two obtained optimal
solutions. Reference [17] solves the DCVRP based on two
approximation algorithms. Reference [18] uses the improved

branch-and-bound method in the DCVRP and achieves
suitable performance for large instances (maximum of 1000
customers).

(2) Charging demand is a unique characteristic for EVs
so as to be worthy of consideration. The distribution area in
a large urban city is relatively large. When the range cannot
satisfy the distance demand of completing the trip, the vehicle
needs to be recharged at charging stations in transit. Due to
the time lost during recharging, the route may make some
changes. Therefore, the two subproblems (how the charging
stations are assigned and when the vehicles recharge) will be
addressed. An optimal charging plan constitutes a part of the
results.

(3) One of the ideas in the paper is the dynamic traffic
environment. The majority of the previous EVRP research
focuses on the static traffic environment, in which travel
time is regarded as a constant factor. However, in a real road
network, the traffic environment is dynamic in real time. If
the results from the model with the static traffic environment
are applied to a real road network, some circumstances,
such as excess cost, serve delay, vehicle accidents, unsuitable
charging stations, and nonoptimal paths, may be attributed
to the large difference. To avoid unnecessary losses and
consumptions, this paper concentrates on the dynamic traffic
environment and considers travel time as a variable factor.
The fluctuations in travel time can be implemented to well
reflect the dynamic traffic environment in the developed
model and results. The EVRP with variable travel time is not
studied at present. However, the VRP with variable travel
time has been investigated since 1990.The VRP with variable
travel time is generally referred to as a dynamic network
VRP or time-dependent VRP (TD-VRP). In the early period,
numerous papers (refer to [19–24]) attempt to connect the
dynamic features of traffic with the VRP and present the
related models. However, a major weakness of these papers is
that the proposed models cannot satisfy the first-in-first-out
(FIFO) property. Considering that the travel time between
two nodes is dependent on the travel speed, which is divided
intomany cases in one day, [25] proposes the TD-VRPmodel,
which is verified to conform with the FIFO property. With
the rapid development of intelligent transportation systems
(ITSs), massive data can be collected and processed in real
time. Some papers (refer to [26–30]) develop the subsequent
models.

(4) Vehicle capacity is a basic consideration in the VRP or
variants.

(5) There is a strict requirement for time window so that
all customers can be served in time. The charging time in
transit influences the time window. In this paper, a soft time
window, which has a certain penalty cost due to early or late
arrivals by customers, is considered.

(6)The costs are evenmore significant from the viewpoint
of logistics companies. Therefore, the objective of the model
is to minimize the total costs, including travel cost, charging
cost, penalty cost, and vehicle fixed cost.

Based on these above considerations, the paper presents
an electric vehicle routing problem with charging time
and variable travel time (EVRP-CTVTT) to fulfil customer
demands, ensure operation safety, and reduce costs.
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Figure 1: An example of a simple operation scheme.

This paper is organized as follows: Section 2 describes
the problem and introduces charging time, travel time
calculation, and dynamic Dijkstra algorithm. The model is
formulated as a mixed-integer linear program in Section 3.
Section 4 briefly introduces solution technology. Section 5
presents experimental data, results, and analysis. Additional
conclusions and future research are presented in Section 6.

2. Problem Description

Assume that there are 20 available logistics EVs to deliver
many cargoes from the single depot to the customers. The
requirement that all the used vehicles must depart from
the depot to perform delivery and return to the depot is
applied. During mid-tour, these vehicles are not allowed to
return to the depot. To prevent the depletion of the whole
battery power, EVs with the insufficient battery power can be
recharged at charging stations many times in transit.

An optimal vehicle operation scheme which includes the
routes, the vehicle departure time at the depot, the charging
plan, and the shortest paths is obtained to fulfil customer
demand, ensure operation safety, and reduce costs.The routes
and the vehicle departure time at the depot answer the
following two questions: how customers are visited and when
the used vehicles depart from the depot, respectively. The
charging plan is to solve the problem of how and when
the used vehicles with charging demand are recharged. The
shortest paths are to guide the vehicles how to drive in a large
road network.

To imply the optimal vehicle operation scheme, we show
a simple result example with 10 customers and 8 charging
stations (refer to Figure 1). The detailed results are as
follows: depot-1-9-C2-6-depot (route 1), depot-5-4-7-8-C5-
depot (route 2), and depot-2-3-10-depot (route 3).The vehicle

Table 1: Charging level.

Level Type Profile Charging time
(100% capacity)

Level 1 Slow
charging

120V, 15 or 20Ah branch
circuit, 1.44 kW
maximum power

4–8 h

Level 2 Regular
charging

240V, 40Ah branch
circuit, 10 kWmaximum

power
2-3 h

Level 3 Fast charging 480V, 60–150 kW power 30min to 1 h

on route 1 leaves the depot at 9:15 to separately visit three
customers and needs to be recharged at node C2 in transit.
Similarly, the vehicle on route 2 leaves the depot at 15:10 and is
recharged at nodeC5.On route 3, the vehicle has the sufficient
battery power for the entire trip so as to not have need of
travelling to any charging station. Because the entire road
network including massive intersection information is not
given in Figure 1, the shortest paths are not constructed. A
realistic study case and the corresponding complete results
are presented in Section 5.

The EVRP-CTVTT model has two main considerations:
charging demand and dynamic traffic environment. There-
fore, we carefully introduce these two in Sections 2.1 and
2.2. In addition, a dynamic Dijkstra algorithm introduced in
Section 2.3 is proposed to solve the shortest path problem.

2.1. ChargingDemand. In general, the logistics companywith
EVs has charging spots at the depot. EVs can be charged
during idle periods (e.g., night time). So when leaving depot,
EVs have the full battery power.However, sometimes the trips
are too long so that EVs have insufficient battery power to
complete the entire trips in transit. Then EVs can go to the
public charging stations which provide a better choice for the
running EVs to replenish the battery power. According to the
Society of Automotive Engineers (SAE), three charging levels
exist, as listed in Table 1. Level 1 is suitable for overnight at
home and workplace. Level 2 facilities are typically installed
at private and public facilities. Level 3, which is also referred
to as fast charging, is high-voltage and high-current charging
implementation.

Currently, the majority of the public charging stations in
Beijing provide fast charging, which can rapidly complete
the charging process in 1 h. The real recharged battery power
is not considered; that is, regardless of the battery power
when an EV arrives at a charging station, the charging
time is regarded as a constant value (assume 30min). When
recharging is undertaken, the batteries are filled to capacity.
In addition, the queue is not considered; that is, EVs are
certainly recharged whenever possible.

2.2. Dynamic Traffic Environment. The complexity traffic
conditions may spend more travel time so that there is
an impediment on customer serve timeliness and vehicle
accessibility. The implementation, such as fluctuations in
travel time, is an efficient method for reflecting the dynamic
traffic environment in a real road network. Therefore, the
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Figure 3: Travel distance and travel time of the vehicle travelling over link 𝑎.
variable travel time is introduced to restore the real driving
environment of EVs. The effective and comprehensive calcu-
lation of the travel time is significant.

The travel time calculation proposed by Ichoua 2003 [25],
where the adjustment of the travel speed is considered and the
FIFO property is certified is applied in this paper. One day is
subdivided into many time periods. The travel speed is not
assumed to be constant and changes when a vehicle crosses
the boundary between two consecutive time periods. The
acceleration time or deceleration time determined by the two
different travel speeds in the boundary is short and should
be disregarded. In other words, the changing travel speed is
considered to be a step function (refer to Figure 2).The travel
time is the sum of the travel time and different traffic speeds.

For example, there are many time periods 𝑇𝑖, 𝑖 =1, 2, . . . , 𝑛. A vehicle leaves the starting node of link 𝑎 at time
period 𝑇𝑘 and travels at the traffic speed V𝑇𝑘𝑎 until the vehicle
arrives at the node located at the boundary 𝑇𝑘 and 𝑇𝑘+1. The
vehicle travels at the traffic speed V𝑇𝑘+1𝑎 until the vehicle arrives
at the node located at the boundary𝑇𝑘+1 and𝑇𝑘+2. Finally, the
vehicle arrives at the end node of link 𝑎 at time period 𝑇𝑚.
Figure 3 shows the travel distance and the travel time of the
vehicle travelling over link 𝑎. Based on the process, the travel
time from node 𝑖 to node 𝑗 is

𝑡𝑖𝑗 = ∑
𝑎∈𝐿 𝑖𝑗

𝑛∑
𝑖=𝑘

𝑙𝑇𝑖𝑎
V𝑇𝑖𝑎
, (1)

𝑛∑
𝑖=𝑘

𝑙𝑇𝑖𝑎 = 𝑙𝑎, (2)

where 𝑙𝑇𝑖𝑎 is the travel distance of the vehicle that travels over
link 𝑎 at time period 𝑇𝑖 and 𝑙𝑎 is the length of link 𝑎.
2.3. Dynamic Dijkstra Algorithm. There are massive intersec-
tions in a real road network. It is unrealistic that the vehicles
drive by the straight line between two nodes. Therefore, how
to find out the shortest paths between two any adjacent nodes
along the routes is a problem in the EVRP-CTVTT model.
The routes, the vehicle departure time at the depot, and the
charging plan are obtained from the EVRP-CTVTT model
which is present in Section 3.The shortest path (SP) problem
in this paper is addressed alone and its solution is used in the
EVRP-CTVTT model. SP is to obtain a path with minimal
cost in a directed and complete graph. The most common
method of solving SP is the classical Dijkstra algorithm [31]
which is a method to fix a single node as the source node,
obtain the shortest paths from the source to all other nodes
in the graph, and produce a shortest path tree. In the classical
Dijkstra algorithm, link weight is always regarded as distance
(constant value).

However, when travelling in the multivariate traffic con-
ditions, the vehicles spend more time. The majority of the
drivers are more concerned with time instead of distance.
Therefore, travel time instead of distance is considered as link
weight. Due to the dynamic traffic, the travel time of each link
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[𝑆]=Dijkstra(Graph, 𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑡𝑖𝑚𝑒[𝑠𝑜𝑢𝑟𝑐𝑒]):
create node set 𝑉
For each node V in Graph:𝑑𝑖𝑠𝑡[V] ← Infinity𝑝𝑟𝑒V[V] ← Undefined

add V to 𝑄
End for𝑑𝑖𝑠𝑡[𝑠𝑜𝑢𝑟𝑐𝑒] ← 0𝑢0 ← 𝑠𝑜𝑢𝑟𝑐𝑒
While 𝑄 is not empty:𝑢 ← node in 𝑄 with min 𝑑𝑖𝑠𝑡[𝑢]

remove 𝑢 from 𝑄
If 𝑝𝑟𝑒V[𝑢] is defined𝑢0 ← 𝑝𝑟𝑒V[𝑢]

cost(𝑢0, 𝑢) ← output of Eq. (1) with 𝑇0𝑡𝑖𝑚𝑒[𝑢] ← 𝑡𝑖𝑚𝑒[𝑢0] + cost(𝑢0, 𝑢)
End if
For each neighbor V of 𝑢:
cos𝑡(𝑢, V) ← output of Eq. (1) with 𝑡𝑖𝑚𝑒[𝑢]𝑎𝑙𝑡 ← 𝑑𝑖𝑠𝑡[𝑢] + cos𝑡(𝑢, V)
If 𝑎𝑙𝑡 < 𝑑𝑖𝑠𝑡[V]:𝑑𝑖𝑠𝑡[V] ← 𝑎𝑙𝑡𝑝𝑟𝑒V[V] ← 𝑢𝑡𝑖𝑚𝑒[V] ← 𝑡𝑖𝑚𝑒[V] + cost(𝑢, V)

End if
End for

End while
return 𝑑𝑖𝑠𝑡[], 𝑝𝑟𝑒V[]𝑆 ← empty sequence𝑢 ← 𝑡𝑎𝑟𝑔𝑒𝑡
While 𝑝𝑟𝑒V[𝑢] is defined:
insert 𝑢 at the beginning of 𝑆𝑢 ← 𝑝𝑟𝑒V[𝑢]

End while
insert 𝑢 at the beginning of 𝑆

Pseudocode 1: Pseudocode of dynamic Dijkstra algorithm.

is not always constant and changes in real time.Then, the link
weight is caused to be dynamic. To solve the SP with variable
travel time, we refer to the construction and theory of the
classical Dijkstra algorithm and make some improvements
over the classical Dijkstra algorithm to propose a dynamic
Dijkstra algorithm, where the travel time between any two
nodes in the graph needs to be again computed so that the
linkweight is updated in real timewhen one node chooses the
next connected node. According to the travel time calculation
in Section 2.2, the time period of the vehicle arriving at the
starting node of the current link must be known. However,
there may be several upstream links for the current link.
When the current link is transferred from different upstream
links, there is different arrival time at the starting node of the
current link. So the time period of the vehicle arriving at the
starting node of the current link must be on-line recorded
in combination with the time periods of the current link to
compute the travel time of the current link.

Based on the ideas of the dynamic Dijkstra algorithm,
the pseudocode of the dynamic Dijkstra algorithm (Pseu-
docode 1) is described as follows: graph is the road network;𝑠𝑜𝑢𝑟𝑐𝑒 is the origin; 𝑡𝑎𝑟𝑔𝑒𝑡 is the destination; 𝑆 is the sequence

of the shortest path from 𝑠𝑜𝑢𝑟𝑐𝑒 to 𝑡𝑎𝑟𝑔𝑒𝑡; cost(𝑢, V) repre-
sents the link weight of link (𝑢, V). The vehicle arrives at node𝑖 at time 𝑡𝑖𝑚𝑒[𝑖].
3. Model Formulation

Based on the problem description and considerations, the
EVRP-CTVTT model is formulated as the following mixed-
integer linear program. The involved variables in the model
are defined as follows:

𝐶0: total costs (yuan)𝐶𝑓𝑘: fixed vehicle cost of vehicle 𝑘 (yuan)
𝐶𝑡𝑘: travel time cost of vehicle 𝑘 (yuan)
𝐶𝑟𝑘: charging cost of vehicle 𝑘 (yuan)𝐶𝑝𝑘: penalty cost of vehicle 𝑘 (yuan)𝑐𝑓: per-unit fixed vehicle cost (yuan/one vehicle)
𝑐𝑡: per-unit travel time cost (yuan/min)
𝑐𝑐: per-unit charging cost (yuan/one time)
𝑐𝑒: per-unit early arrival penalty cost (yuan/min)
𝑐𝑑: per-unit delay arrival penalty cost (yuan/min)
𝐹: a set of charging stations
𝑂: start depot
𝑂: end depot
𝐶: a set of customers
𝑉: 𝑂 ∪ 𝐶 ∪ 𝐹 ∪ 𝑂
𝐾: a set of the available vehicles
𝐷𝑖𝑘: residual range of vehicle 𝑘 at node 𝑖 (km)
𝑑𝑖𝑗: travel distance of the shortest path from node 𝑖 to
node 𝑗 (km)
𝐷max: maximum driving range (km)
𝑊𝑂𝑘: loading weight of vehicle 𝑘 departing from start
depot (kg)
𝑤𝑖: freight weight of node 𝑖 (kg)𝑊max: vehicle load capacity (kg)
𝑡𝑖𝑗𝑘: travel time of vehicle 𝑘 travelling from node 𝑖 to
node 𝑗 (min)
𝑇𝑖𝑘: departure time of vehicle 𝑘 at node 𝑖
𝑇early𝑂 : earliest vehicle operation time

𝑇delay
𝑂

: latest vehicle operation time

𝑇early𝑖 : earliest arrival time at node 𝑖
𝑇delay𝑖 : latest arrival time at node 𝑖
𝑡𝑐: charging time (min)
𝑧𝑗: whether there is a charging station at node 𝑗, {1, 𝑗 ∈𝐹; 0, else}
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Decision Variables

𝑥𝑖𝑗𝑘: {1, vehicle 𝑘 travels from node 𝑖 to node 𝑗; 0,
otherwise}
𝑦𝑗𝑘: {1,vehicle 𝑘 is recharged at node 𝑗; 0,otherwise}

𝑇𝑂𝑘: departure time of vehicle 𝑘 at the depot
The model formulation is shown as follows:

Minimize 𝐶0 = ∑
𝑘∈𝐾

𝐶𝑓𝑘 + 𝐶𝑡𝑘 + 𝐶𝑟𝑘 + 𝐶𝑝𝑘, (3)

where

𝐶𝑓𝑘 = 𝑐𝑓(1 − ∑
𝑖∈𝑂

∑
𝑗∈𝑂

𝑥𝑖𝑗𝑘) (4)

𝐶𝑡𝑘 = 𝑐𝑡(∑
𝑖∈𝑂

𝑇𝑖𝑘 − ∑
𝑖∈𝑂

𝑇𝑖𝑘 − 𝑡𝑐∑
𝑖∈𝐹

𝑦𝑖𝑘) (5)

𝐶𝑟𝑘 = 𝑐𝑐∑
𝑖∈𝐹

𝑦𝑖𝑘 (6)

𝐶𝑝𝑘 = ∑
𝑖∈𝐶

[𝑐𝑒max {0, 𝑇early𝑖 − 𝑇𝑖𝑘} + 𝑐𝑑max {0, 𝑇𝑖𝑘 − 𝑇delay𝑖 }] , (7)

Subject to ∑
𝑖∈𝐶∪𝐹∪𝑂

𝑥𝑖𝑗𝑘 = 1 ∀𝑗 ∈ 𝐶, ∀𝑘 ∈ 𝐾 (8)

∑
𝑗∈𝐶∪𝐹∪𝑂

𝑥𝑖𝑗𝑘 = 1 ∀𝑖 ∈ 𝐶, ∀𝑘 ∈ 𝐾 (9)

∑
∀𝑖∈𝐶∪𝐹∪𝑂

𝑥𝑖𝑗𝑘 = ∑
∀𝑚∈𝐶∪𝐹∪𝑂

𝑥𝑗𝑚𝑘 ∀𝑗 ∈ 𝐶 ∪ 𝐹, ∀𝑘 ∈ 𝐾 (10)

∑
∀𝑗∈𝐶∪𝐹∪𝑂

𝑥𝑂𝑗𝑘 = 1 ∀𝑘 ∈ 𝐾 (11)

∑
∀𝑗∈𝐶∪𝐹∪𝑂

𝑥𝑗𝑂𝑘 = 1 ∀𝑘 ∈ 𝐾 (12)

𝐷𝑗𝑘 = [𝐷𝑖𝑘 (1 − 𝑦𝑖𝑘) + 𝑦𝑖𝑘𝐷max − 𝑑𝑖𝑗] 𝑥𝑖𝑗𝑘 ∀𝑖 ∈ 𝐶 ∪ 𝐹 ∪ 𝑂, ∀𝑗 ∈ 𝐶 ∪ 𝐹 ∪ 𝑂, ∀𝑘 ∈ 𝐾 (13)

𝐷𝑗𝑘 ≥ 0 ∀𝑗 ∈ 𝐶 ∪ 𝐹 ∪ 𝑂, ∀𝑘 ∈ 𝐾 (14)

𝐷𝑂𝑘 = 𝐷max ∀𝑘 ∈ 𝐾 (15)

𝑊𝑂𝑘 = ∑
𝑖∈𝐶∪𝐹∪𝑂

∑
𝑗∈𝐶

𝑤𝑗𝑥𝑖𝑗𝑘 ∀𝑘 ∈ 𝐾 (16)

𝑊𝑂𝑘 ≤ 𝑊max ∀𝑗 ∈ 𝑉, ∀𝑘 ∈ 𝐾 (17)

𝑇𝑗𝑘 = (𝑇𝑖𝑘 + 𝑡𝑖𝑗𝑘 + 𝑦𝑖𝑘𝑡𝑐) 𝑥𝑖𝑗𝑘 ∀𝑖 ∈ 𝐶 ∪ 𝐹 ∪ 𝑂, ∀𝑗 ∈ 𝐶 ∪ 𝐹 ∪ 𝑂, ∀𝑘 ∈ 𝐾 (18)

𝑇early𝑂 ≤ 𝑇𝑂𝑘 ∀𝑘 ∈ 𝐾 (19)

𝑇delay
𝑂
≥ 𝑇𝑂𝑘 ∀𝑘 ∈ 𝐾 (20)

𝑦𝑗𝑘 ≤ 𝑧𝑗 ∀𝑗 ∈ 𝑉, ∀𝑘 ∈ 𝐾 (21)

𝑦𝑗𝑘 = {0, 1} ∀𝑗 ∈ 𝑉, ∀𝑘 ∈ 𝐾 (22)

𝑥𝑖𝑗𝑘 = {0, 1} ∀𝑗 ∈ 𝐶 ∪ 𝐹 ∪ 𝑂, ∀𝑖 ∈ 𝐶 ∪ 𝐹 ∪ 𝑂, ∀𝑘 ∈ 𝐾. (23)
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Equation (3) minimizes the total costs, which consist of
the vehicle fixed cost, the travel cost, the penalty cost, and
the charging cost. In (4), the used vehicles spend the vehicle
fixed cost. The travel cost shown in (5) is proportional to
the travel time. Equation (6) describes the expense to use
charging stations. Because the customers may be served early
or late, the penalty cost is charged in (7).

Equations (8) and (9) ensure that each customer is
visited by only one vehicle. Equation (10) presents the flow
conservation, in which the number of arrivals must equal the
number of departures at any customer or charging station.
Equations (11) and (12) require all the vehicles to leave from
the start depot and return to the end depot. Because only one
depot exists, the start depot and the end depot are located at
the same node (𝑂 = 𝑂). No running vehicles pass any node,
with the exception of the start depot and the end depot.

Equation (13) is the expression of the residual range. The
vehicle drives based on the shortest path solved in Section 2.3.
The range constraint that the residual range of any vehicle
at any node must be larger than zero is proposed in (14).
Equation (15) states that each vehicle has 100% charge when
leaving the start depot.

Equation (16) states that the vehicles delivermany loads to
the customers. Equation (17) ensures that the loading weight
of each vehicle does not exceed the vehicle load capacity. In
(18), the vehicle departure time at the current node equals the
sum of the vehicle departure time at the last node, the travel
time between the last node and the current node, and the
charging time. The travel time is obtained by the travel time
calculation ((1)-(2)). Equations (19)-(20) ensure that all the
vehicles perform delivery within the vehicle operation time
period.

Equation (21) requires all the vehicles to only visit the
charging stations to be recharged. Equations (22) and (23)
ensure that 𝑦𝑗𝑘 and 𝑥𝑖𝑗𝑘 are 0-1 decision variables.

4. Model Solution Technology

TheVRPs and variants are anNP-hard problem.Theheuristic
algorithms can achieve better performance in computation
time and solution quality for the VRPs and variants. As one
of the heuristic algorithms, genetic algorithm (GA) is easy
to program and has faster computation time. Moreover, the
GA has been widely applied in the complex VRPs or variants
implemented especially in large and realistic road networks
and can obtain acceptable better solution. Therefore, consid-
ering the complexity of the proposed model and the road
network, theGA is regarded as themodel solution technology
in the paper.

In the GA, a set number of individuals with genes
are processed by selection and multiplication operators to
produce new individuals. The individuals with better fitness
will obtain more opportunities to survive. To achieve variety
among the individuals, crossover and mutation are applied
in the GA procedure. The procedure of the GA is shown as
follows.

Step 1. Apply encoded mode to produce initial population𝑃(𝑔𝑒𝑛) (|𝑃(𝑔𝑒𝑛)| = 𝑁); then 𝑔𝑒𝑛 = 0.

Table 2: Algorithm parameter values.

Parameter Description Value𝑁 Number of individuals 50𝑇 Number of generations 300𝑁𝑒 Number of elite individuals 20𝑃𝑐 Crossover rate 0.9𝑃𝑚 Mutation rate 0.1

Step 2. Compute fitness for each individual in 𝑃(𝑔𝑒𝑛).
Step 3. Select Ne individuals from 𝑃(𝑔𝑒𝑛) at high fitness
values as elite individuals. The elite individuals are not
processed; go to Step 7. The remaining individuals compose
a normal population 𝑃1(𝑔𝑒𝑛) (|𝑃1(𝑔𝑒𝑛)| = 𝑁 − 𝑁𝑒).
Step 4. Every two individuals in 𝑃1(𝑔𝑒𝑛) form a pair to be
applied in a crossover. Each individual is required to satisfy
all constraints. If not, the pair is in vain; run the crossover
again. 𝑃1(𝑔𝑒𝑛) is updated.
Step 5. Each individual in 𝑃1(𝑔𝑒𝑛) is applied in a mutation.
Each individual is required to satisfy all constraints. If not,
the individual is in vain; run the mutation again. 𝑃1(𝑔𝑒𝑛) is
updated.

Step 6. 𝑃1(𝑔𝑒𝑛) and the elite individuals are combined to
form a new population 𝑃(𝑔𝑒𝑛), where 𝑔𝑒𝑛 = 𝑔𝑒𝑛 + 1.
Step 7. If 𝑔𝑒𝑛 < 𝑇, return to Step 3. Otherwise, stop running
and output the individual with the highest fitness value in𝑃(𝑔𝑒𝑛).
Step 8. Decode the individual to achieve the optimal solution.

The GA parameters (number of individuals, number of
generations, number of elite individuals, crossover rate, and
mutation rate) may have an impact on the solution values.
The three parameters (number of individuals, number of
generations, and number of elite individuals) are determined
by many experiments with different parameters. And the two
parameters (crossover rate and mutation rate) are chosen in
their reasonable values ranges. All parameters in the GA are
listed in Table 2.

The two decision variables 𝑦𝑗𝑘 (routes) and 𝑥𝑖𝑗𝑘 (charging
plan) can be obtained from the individual. The encoded
mode in which the decision variables are expressed by the
individual is the premise of theGA.We adopt themodewhere
the individual includes all visited nodes. For example, there
are one depot, 𝑛𝑛 customers, 𝑚𝑚 charging stations, and 𝑘𝑘
vehicles. The procedure of the encoded mode is as follows:

(1) The serial numbers of 𝑛𝑛 customers and𝑚𝑚 charging
stations are successively arranged as 1, . . . , 𝑛𝑛, 𝑛𝑛 +1, . . . , 𝑚𝑚.

(2) After it is disordered, the string of numbers is defined
as 𝐴.
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Route 1 

Route 2 
(ineffective)

Route 3 

Individual 11 13 15 16 145 2 1 4 9 6 3 7 8 10 12

|11 5 2 1 13|

|15 16|

|14 4 9 6 3 7 8 10 12|

Figure 4: A simple example of the encoded mode (black, red, and
green numbers represent depot, customer, and charging station,
resp.).

(3) Sequentially define the serial numbers as 𝑚𝑚 +1,𝑚𝑚 + 2, . . . , 𝑚𝑚 + 2𝑘𝑘 at the start depots and the
end depots.

(4) The first position and last position of 𝐴 are inserted
by the numbers𝑚𝑚 + 1 and𝑚𝑚 + 2, respectively.

(5) Last, the numbers𝑚𝑚+3,𝑚𝑚+ 4, . . . , 𝑚𝑚+ 2𝑘𝑘 are
randomly inserted into any other position of 𝐴.

The inserted 𝐴 forms one individual. The individual is
divided into many segments by the numbers from 𝑚𝑚 + 1
to 𝑚𝑚 + 2𝑘𝑘. Each segment can be converted to one route.
However, some routes are considered ineffective because they
do not visit any customers.

A simple example is shown in Figure 4 to explain the
encoded mode. Three vehicles, one charging station, and
nine customers are available. Based on the procedure of the
encodedmode, an individual is formed. Some findings can be
achieved by decoding the individual: route 1 visits customers
5, 2, and 1; route 2 is ineffective; route 3 visits customers 4, 9,
6, 3, 7, and 8; and route 3 is recharged prior to returning to the
depot.

In addition to the two decision variables (𝑦𝑗𝑘 and 𝑥𝑖𝑗𝑘),
the remaining decision variable 𝑇𝑂𝑘 indicates that the vehicle
departure time at the depot is solved alone.The paper applies
exhaustive method. The set of the available departure times
is composed of the time at ten minute intervals between the
earliest operation time and the latest operation time (e.g.,
06:00, 06:10,. . .,20:50, 21:00). Each effective route orderly
matches with one available departure time to compute the
object value. For the minimal object value, the available
departure time is considered as the vehicle departure time at
the depot.

5. Large Realistic Case Study

A large and realistic case study is conducted to reflect
the performance of the proposed model and the solution
technology. All experiments were run on a desktop with
an Intel Core i5-5200U CPU, 16GB of RAM, and a 64-
bit operating system. Several types of experimental data are
determined as follows.

5.1. Experimental Data

5.1.1. Road Network. The models are applied to a discrete
representation of a large and realistic road network in the
Beijing urban area (within the fifth ring). The entire road
network of the Beijing urban area is too complex to be
simplified. Considering travel speed data source, model
complexity, and solution effectiveness, the paper primarily
selects all expressways and the majority of arterial roads to
construct a large and realistic road network. After creation,
the road network is composed of 222 nodes and 943 links.
The nodes and links represent the road intersections and road
segments, respectively.

5.1.2. Facilities Data. Three types of facilities exist: depot,
customer, and charging station. Only one depot is located at
the centre of the road network.The locations of 50 customers
which will be served next day and 20 charging stations
are randomly distributed at nodes of the road network.
The freight weight is randomly assigned to each customer
from eight weight grades (10 kg, 20 kg, 30 kg, 40 kg, 50 kg,
60 kg, 70 kg, and 80 kg). Similarly, the time window of each
customer is also randomly produced every hour between 8:00
and 19:00. Figure 5 presents the comprehensive road network
loading facilities data.

5.1.3. Travel Speed Data. To calculate the travel time in the
EVRP-CTVTT model, the travel speed must be determined.
Themicrowave sensor installed on a section of an expressway
collected the traffic speed data every 2min on one day.
Because the travel speed data is from the reality and the
collection interval is very short (2min), the real traffic
environment can be effectively restored. Figure 6 shows the
travel speed data during the vehicle operation time period.

5.1.4. Constant Variable Value Determination. Currently, EVs
for logistics in Beijing are primarily electric vans manufac-
tured by the Beijing Motor Company. According to the logis-
tics EV technology specification, the vehicle load capacity
and the maximum driving range are 1000 kg and 120 km,
respectively. The per-unit vehicle fixed cost 𝑐𝑓 considers
driver wage, upkeep, vehicle idle cost, and vehicle insurance
cost. The per-unit travel cost 𝑐𝑡 is based on time utilization
and operation efficiency. According to the advices from the
logistics company, we set the two parameters to 100 yuan
and 1 yuan/min, respectively. The per-unit charging cost 𝑐𝑐
is determined by the electricity prices and charging service
fee. In Beijing, the average industrial electricity price is
0.8 yuan/kWh [32]. At present, no unified standard approach
is available for the charging service fee. For convenient calcu-
lations, the per-unit charging cost is valued to be 30 yuan:
21.6 yuan (cost with 100% charge) plus 8.4 yuan (charging
service fee). The charging time 𝑡𝑐 is set to 30min according
to Section 2.1. The constant variables are summarized in
Table 3.

5.2. Results and Analysis. Based on the foregoing experi-
mental data, the EVRP-CTVTT model is solved by the GA.
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Figure 6: Travel speed data.

Table 3: Constant variable values.

Constant variable Description Value

𝑐𝑓 Per-unit vehicle fixed cost
(yuan/one vehicle) 100

𝑐𝑡 Per-unit travel cost (yuan/min) 1

𝑐𝑒 Per-unit early arrival penalty
cost (yuan/min) 1

𝑐𝑑 Per-unit delay arrival penalty
cost (yuan/min) 1

𝑐𝑐 Per-unit charging cost
(yuan/one time) 30

𝐷 Maximum driving range (km) 120𝑡𝑐 Charging time (min) 30𝑊𝑐 Vehicle loading capacity (kg) 1000

MATLAB R2012a is applied in the GA implementation. Due
to the randomness of algorithm, the GA is repeatedly run

Table 4: Optimal object values of ten experiments.

Experiment Optimal object value (yuan)
1 1440.48
2 1632.92
3 1648.67
4 1720.54
5 1627.82
6 1596.44
7 1501.28
8 1798.87
9 1716.48
10 1864.04

ten times. The computational time the algorithm takes in
each experiment is not very different. The average compu-
tational time is about 3 h. Consider that the model and the
realistic road network are overly complex. In addition, the
result is obtained the day before the result is performed
in reality. Therefore, the computational time the algorithm
takes is acceptable. The model object (optimal object value)
is regarded as the experimental index to be compared.
The experiment with the least optimal object value will be
analyzed in details. The compared result in Table 4 indicates
that Experiment 1 has the best solution performance.

The algorithm iteration process of Experiment 1 (Fig-
ure 7) shows that the GA can quickly guarantee convergence
and improve computational effort. Moreover, the results,
including the routes, the vehicle departure times at the depot,
and the charging plan, are presented as follows. The vehicle
running information including vehicle departure time, travel
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Figure 8: Residual range of the vehicle arriving at any visited node.

distance, and order of the visited nodes is shown in Table 5.
Table 6 summarizes all the details costs.

As requested, seven vehicles are dispatched. The travel
distance of route 1 exceeds the maximum driving range
(120 km). Due to the limited range, the vehicle on route 1
is required to be recharged at charging station 2 in transit.
Moreover, the charging time delays the time for serving
customers and produces a larger penalty cost for route 1.

As the most important factor to influence the routes and
charging plan, the residual range of each vehicle arriving
at any visited node needs to be analyzed in detail (refer to
Figure 8). It indicates that the obtained optimal solution
satisfies the range constraint that the residual range of a
vehicle at any visited node must exceed zero. For route
1, because the vehicle is fully recharged at charging sta-
tion 2, the residual range for customer 22 which is the

first visited node after the vehicle is recharged distinctly
increases.

Besides the routes, the vehicle departure times at the
depot, and the charging plan, the results about the shortest
path problem must be present. We also depict the shortest
paths along the routes in the road network. According to
Figure 9, the running track of each route can be clearly shown.
The corresponding vehicles visit the customers or charging
stations in an orderly manner.

6. Conclusions

At present, the increasing EVs are employed in different
transport areas such as logistics. To better address the
problem of how the vehicle operation scheme is planned
when EVs are regarded as the transport mode to visit the
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Table 5: Vehicle running information.

Route Order of the visited nodes Vehicle departure time Travel distance (km)
1 (recharged) Depot-20-26-23-44-27-S2-22-47-40-43-49-30-6-depot 13:50 179.80
2 Depot-8-36-38 -31-13-18-32-7-24-17-41-48-14-46-depot 14:50 107.20
3 Depot-29-2-12-21-19-depot 10:10 76.71
4 Depot-11-42-35-45-depot 16:30 41.98
5 Depot-9-37-50-depot 14:00 45.86
6 Depot-28-5-39-3-depot 12:10 33.48
7 Depot-34-4-10-16-25-15-33-1-depot 8:00 66.80
In column 2, the numbers (such as 20) represent the customer number; S2 represents charging station 2.

Table 6: All the details costs.

Route Fixed vehicle cost (yuan) Travel cost (yuan) Penalty cost (yuan) Charging cost (yuan) Total costs (yuan)
1 (recharged) 100.00 226.00 41.54 30.00 397.55
2 100.00 115.04 0.00 0.00 215.04
3 100.00 79.50 0.00 0.00 179.50
4 100.00 43.90 0.81 0.00 144.71
5 100.00 49.95 0.00 0.00 149.95
6 100.00 35.67 0.00 0.00 135.67
7 100.00 116.83 1.20 0.00 218.03
Total 700.00 666.90 43.55 30.00 1440.45

customers in a real road network, this paper comprehensively
considers the distribution features (time window and weight
constraint), the EV characteristics (limited range and charg-
ing demand), and the dynamic traffic environment to develop
the EVRP-CTVTT model with the minimal total costs. An
optimal vehicle operation scheme, which simultaneously
consisted of the routes, the vehicle departure time at the
depot, the charging plan, and the shortest paths, is achieved.

Due to the limited range, EVs are sometimes recharged
at charging stations many times while in transit to ensure
that the trip is completed. The best method for optimally
assigning charging stations for EVs with charging demand is
also discussed in the paper.

In reality, traffic is constantly changing. Different from
the majority of the related papers, this paper focuses
on the dynamic traffic environment. To implement the
dynamicity of traffic, the fluctuations in travel time are
introduced in the developing model. The changing travel
speed every 2min for one day is applied to compute
the travel time. Based on the changing travel speed, a
dynamic Dijkstra algorithm making some improvements
over the classic Dijkstra algorithm is proposed to solve the
shortest path between any two adjacent nodes along the
routes.

A large and realistic case study with the road network
in the Beijing urban area, with 50 customers and 20 charg-
ing stations, is presented. The GA is applied to solve the
EVRP-CTVTT model and obtain several results, including
the routes, the vehicle departure time at the depot, and
the charging plan. The results indicate that the GA yields

acceptable performance on computational time, conver-
gence, and solution quality.

From the results, we conclude that the EVRP-CTVTT
model and dynamic Dijkstra algorithm completely satisfy
customer demand while reducing cost, preventing deple-
tion of all battery power while in transit, and ensuring
safe operation. In addition, the results provide an opti-
mal vehicle scheme for the logistics company with EV
operation.

Although the paper first considers charging time and
variable travel time to solve the EVRP, several aspects remain
unaddressed:

(i) Even if we apply the real traffic speed data, sometimes
there is randomness in the travel speed because of
several traffic accidents. Therefore, the more complex
expressions of the travel speed will be focused on.

(ii) The charging station locations, which may impact
the charging plan, are fixed. The related research
association route problem and location problem will
be investigated in the future.

(iii) The optimal solution is extremely influenced by the
per-unit cost parameters.This paper directly provides
values based on operation experience. Our future
work will include a sensitivity analysis for these
parameters.
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