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Urban public transit system is a typical mixed complex network with dynamic flow,
and its evolution should be a process coupling topological structure with flow dynamics,

which has received little attention. This paper presents the R-space to make a compar-

ative empirical analysis on Beijing’s flow-weighted transit route network (TRN) and we
found that both the Beijing’s TRNs in the year of 2011 and 2015 exhibit the scale-free

properties. As such, we propose an evolution model driven by flow to simulate the de-
velopment of TRNs with consideration of the passengers’ dynamical behaviors triggered

by topological change. The model simulates that the evolution of TRN is an iterative

process. At each time step, a certain number of new routes are generated driven by
travel demands, which leads to dynamical evolution of new routes’ flow and triggers

perturbation in nearby routes that will further impact the next round of opening new

routes. We present the theoretical analysis based on the mean-field theory, as well as the
numerical simulation for this model. The results obtained agree well with our empirical

analysis results, which indicate that our model can simulate the TRN evolution with

scale-free properties for distributions of node’s strength and degree. The purpose of this
paper is to illustrate the global evolutional mechanism of transit network that will be

used to exploit planning and design strategies for real TRNs.

Keywords: Transit route network; scale-free; evolution; flow dynamics.

PACS numbers: 89.75.-k, 02.50.-r

1. Introduction

Urban public transit network (PTN) is a complicated giant system, composed of not

only routes and stops but also the passenger flow traveling in the network. As the

†Corresponding author.
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topological structure determines the function of networks, the studies on complex

properties of PTNs’ structures have attracted great interest of many researchers

in recent year, for example, the empirical topological studies with the theory of

complex network in the Boston subway system,1,2 transit networks of Beijing,3

Poland,4 German and France,5 as well as railway networks of India6 and China.7,8

They found that there is small-world phenomenon9 or scale-free behavior10 in degree

distributions of most PTNs (a node’s degree is defined as the number of neighbors

that it is linked to). However, most of researches just focused on the static features of

topological structures, while the dynamical characteristics reflected by passengers’

travel behaviors are not given adequate consideration. Recently, the studies on

weighted PTNs related to passenger flow, to our knowledge, are carried out in

two ways. One is modeling the network according to passengers’ travel routes, for

example, Seoul subway11 and bus system,12 and Singapore public transportation

system.13 Lee et al.11 found that the edge weight of Seoul subway system follows

a power-law distribution with exponent γ = 0.56, and Soh et al.13 uncovered that

both the edge weight and node’s strength also obey the power-law distributions with

γ ∈ [12.5] for the Singapore subway and bus network. The other way is studying

the flow-weighted PTNs in L-space,14 which takes both the flow and underlying

physical structure into consideration.

These considerable empirical studies attract more attention to the evolution of

PTNs. Why do different PTNs’ topologies show similar properties of small-world

or scale-free? How to simulate the PTNs’ evolution to reveal these global features?

What role does the passenger flow play in the evolution of topological structure?

How the flow and topology interact and impact mutually? In seeking answers to

these questions, some researchers have tried to model the evolutional process for

PTNs based on network or graph methods. Su et al.15 proposed a game theory

model for simulating the evolution of PTNs that experimental results show agree-

ment with the degree distribution of actual PTN. He et al.16 put forward a growth

model to simulate the transit network through analyzing the static properties of real

PTNs. Besides, some typical models to simulate the PTNs evolution are proposed

recently, for instance, the model with self-avoiding random walks,17,18 the model in

P-space19 and in L-space,20 the ideal n-depth clique network model,21 and the space

evolution model that could satisfy both the passengers and investors’ demands.20,22

They also used empirical evidence to validate the models. However, for most of

studies, the passenger flow distributed in topologies and the dynamic behavior trig-

gered by the topological evolution have not yet been taken into account. Although

topology has great significance for networks’ function, recent studies showed that

connectivity models alone cannot provide sufficient information about the flow per-

formance of real systems.23–30 For the model considering flow dynamics, a typical

one is BBV model23,24 that the network’s growth is driven by traffic flow needs.

This model can successfully reproduce the scale-free properties for node’s degree,

strength and edge weight distributions. However, since PTN is a social-economic

system with passengers who travel in topological network, most of current models
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depend on some unrealistic assumptions that cannot completely reveal the princi-

ples and nature of PTN’s evolution.

In light of the review, the evolutional mechanism of PTNs with consideration of

dynamic flow, as well as the interaction between flow and topology, has still received

little attention, despite the key role that the passenger flow plays in topological evo-

lution and network’s operation. After all, the development of transportation systems

are accompanied by assigning the origin-destination flow across the network and

the network’s operation is not just a connectivity problem. In order to illuminate

the PTNs’ overall layout and intrinsic characteristics, it is significant to model the

flow-based PTNs at the level of transit lines, which is totally different from the

former studies that model the networks based on travel routes or station11–14 and

route’s section (i.e., in L-space20). Hence, in this paper, we will present the R-space

to probe the flow properties of real PTN from the macroscopic viewpoint of transit

line layout, and propose a model driven by passenger flow to simulate the evolu-

tional process of transit route network (TRN) with consideration of flow behaviors.

The model will be validated by theoretical analysis and numerical simulation, as

well as our empirical analysis of real PTNs.

The paper is structured as follows. In the next section, we make a compara-

tive empirical analysis on the complex properties of flow-weighted TRN in Beijing,

which are the basis for modeling evolutional process and used to validate the model

results. In Sec. 3, a flow-driven evolution model for weighted TRN is proposed,

and a theoretical solution for the model is presented with the mean-field theory.

In Sec. 4, we make a numerical simulation to study the impacts of flow dynamic

behavior on the network’s structure. Conclusions and future research are given in

Sec. 5.

2. Comparative Empirical Analysis of Flow-Weighted Network

for Beijing’s Bus Transit System

2.1. Definition of R-space and network generation

We define the R-space to measure the weighted complex network of transit route

system. R-space is a method to describe the spatial connection of node and edge

in transit network. Different with “L-space” or “P-space”,20 the R-space regards

the end of a route (i.e., the first or ending stop/terminal) in bus route network as

a node, and links an edge between two nodes if they are two ends of a route. The

edge weight wij between node i and node j is represented by the average daily

passenger flow Pij of a route. In general, the flow is bi-directionally balanced for a

whole day,31 so we make the assumption that the network is undirected (wij = wji)

by averaging the in and out edge weights. An example of three routes in R-space

is shown in Fig. 1. This R-space can be exploited to analyze the overall layout of

topological network and flow distribution at the macroscopic level.

Beijing is one of the most populated cities in the world. Nearly 29% of daily

trips depend on bus transit in 2015, that is to say, approximate 13 million trips were
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Fig. 1. Transformation of actual public transit routes to flow-weighted TRN in R-space.

made on bus system daily. As a result, Beijing bus network is also one of the most

complicated systems in the world. To meet the demand well, every year the number

and routing of transit lines are readjusted by Beijing Public Transportation Group

Corporation. In order to probe the evolution of transit networks, we utilized the

Intelligent Card system to collect the data including routes, stops and passenger

flow in weekdays of the year 2011 and 2015, which are composed of 565 and 727

routes, respectively. Correspondingly, two flow-weighted TRNs are constructed with

346 nodes, 386 edges for 2011 and 448 nodes, 488 edges for 2015. In the following,

we will make a comparative analysis on the basic complex properties of TRNs in

Beijing.

2.2. Degree, strength and weight distribution

In TRNs, the degree ki of node i represents the number of routes that the first or

end stop i is linked to Fig. 2 which illustrates the distributions of node’s degree

for Beijing’s weighted TRNs in 2011 [Fig. 2(a)] and 2015 [Fig. 2(b)], respectively.

We observe that both the degree distributions of 2011 and 2015 on log–log scales
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Fig. 2. (Color online) Node’s degree distribution and its log–log scale plot for weighted TRN in

Beijing. (a) Node’s degree distribution in 2011. (b) Node’s degree distribution in 2015.
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are linear (the blue dots), which is the characteristic signature of power-law.10 It

indicates that in spite of the route adjustment year by year, the degree of TRNs

in Beijing keeps the scale-free property that all the distributions follow power-law

function p(k) ∼ k−γ . The average degrees are also similar with 〈k〉 ≈ 2.23 in 2011

and 〈k〉 ≈ 2.18 in 2015. However, the homogeneity in 2015 is slightly enhanced with

the increase of power-law exponent γ = 1.565 compared with γ = 1.458 for 2011.

The scale-free property of degree reveals that the topology of Beijing’s TRN in R-

space is a hub-and-spoke structure that there are some nodes called hubs possessing

much more degrees than other nodes. How hubs form in topological network and

what factors influence more routes to connect with these hubs? Traditional theories

interpret that nodes with higher degrees tend to grow more edges with other nodes.

However, as the travel demand of passenger is one of the key factors to set up

bus routes, the travel flow pattern and relationship between flow distribution and

topology structure should be investigated to explore if the flow has impact on

topologic forming. In following, further study on passenger flow pattern will be

presented.

As the edge weight wij represents the average daily passenger flow of route rij ,

the strength si of node i, defined as si =
∑
j wij ,

24 denotes the average daily flow

of all routes with a same end i. For the strength distributions (as shown in Fig. 3),

their long-tailed behaviors (the red circles) and approximately linear tails on log–

log scales (the blue dots) show that they also have the properties of power-law

both in 2011 and 2015. It reveals that the flow distribution of nodes is also a hub-

and-spoke structure with great heterogeneity that passenger flow handled by each

end stop differs significantly. However, contrary to the degree, the heterogeneity for

strength distribution is increased from 2011 to 2015 with the exponent γ = 0.9688

decreasing in 2015, compared with γ = 1.564 in 2011. Furthermore, the level of

heterogeneity for strength is quite higher than that of degree in 2015, while 2011

keeps the same. This can be explained further by the relationship between strength
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Fig. 3. (Color online) Node’s strength distribution and its log–log scale plot for weighted TRN

in Beijing. (a) Node’s strength distribution in 2011. (b) Node’s strength distribution in 2015.
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Fig. 4. Edge weight distribution for weighted transit route network in Beijing. (a) Edge weight
distribution and its log-log scale plot in 2011. (b) Edge weight distribution and its semi-log scale

plot in 2015.
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Fig. 5. The strength spectrums as a function of degree for weighted TRN in Beijing.

and degree. As shown in Fig. 4, although the edge weight distribution in 2015 is less

heterogeneous than 2011 because of the exponential distribution in 2015 (indicated

by its linearity on semi-log scale), whereas the power-law distribution in 2011, the

strength spectrums (as shown in Fig. 5) shows that both the strengths in these two

years increase exponentially with degree. Therefore, it is the underlying topology

to guide the flow distribution and the topological heterogeneity make it form the

scale-free structure; at the same time, the exponential growing of strength enhances

the heterogeneity of flow distribution.

2.3. Path length

The path length dij for two nodes i, j in a network is the number of edges on the

shortest path between i and j. For the TRN in R-space, the path length represents
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Fig. 6. The path length distribution for weighted TRN in Beijing.

the minimum transit routes to ride from one terminal to the other. The average

path length (APL) L is the mean of all dij for any two nodes in a network:

L =
2

N(N − 1)

∑
i≥j

dij , (1)

where,N is the number of nodes in the network. As can be seen from Fig. 6, both the

path length in 2011 and 2015 follow the normal distribution and two TRNs have

quite shorter APL, compared with the network diameter D (means the longest

path), i.e., 〈L〉 = 7.41 relative to D = 19 in 2011 and 〈L〉 = 7.62 to D = 16 in 2015.

2.4. Clustering coefficient

To further verify the scale-free property of TRNs, here, the unweighted and weighted

clustering coefficients are analyzed. The clustering coefficient is defined as follows.9

Suppose that node i has ki neighbors; then at most ki(ki−1)/2 edges can exist be-

tween them. Let Ei denote the number of actually existing edges between ki neigh-

bors, then the clustering coefficient ci of node i is the ratio of Ei to ki(ki − 1)/2.

Define C as the average of ci over all i. For the weighted clustering coefficient

cwi ,32 with considering the weights of edges linked between i and its neighbors, it

can reflect the importance of i’s neighbors more completely. In TRNs, the stop’s

clustering coefficient is a measure of the degree to which transit routes in the net-

work tend to cluster together. As shown in Fig. 7, in 2011, average unweighted

clustering coefficient 〈C〉 is 0.00364, weighted 〈Cw〉 is 0.00331, and in 2015, 〈C〉 is

0.00087, weighted 〈Cw〉 is 0.00099. It shows that both the unweighted and weighted

clustering coefficients in 2011 and 2015 are very small, indicating that there is no

significant interconnected communities between nodes whether the edge weights are

taken into account or not. The small clustering, together with shorter average path

length, further indicates that the scale-free features exist in the TRNs of Beijing,

as suggested by Barabási and Albert.10 According to Fig. 7, in 2011, for the routes
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Fig. 7. The unweighted and weighted clustering coefficient distributions for weighted TRN in

Beijing.

with one ends’ degree being 7, the other ends tend to cluster together compared

with that of 2015.

In sum, since the topology and strength distributions are scale-free and het-

erogeneous, while edge weight is more homogenous, we can conjecture an evolu-

tional mechanism of TRNs like this: as the passengers’ travel behavior on transit

routes exhibit the complicated characteristics composing of preferentially choos-

ing10 (according to scale-free property of strength distribution) and randomly evolv-

ing9 (according to small-world phenomenon of edge weight distribution) together, it

is the heterogeneity of underlying topology that leads the flow to tend to assemble

or distribute in one or some specified spatial stops, which makes their strength pref-

erentially grow; conversely, in order to meet the traffic demands, more new routes

will be extended from these preferential stops; consequently, this travel distribu-

tion will further enhance the preferential growth of nodes’ degree. The interaction

between spatial stop location and travel behavior finally leads the TRN’s topol-

ogy and flow distribution structure to macroscopically present the similar scale-free

properties after a long-term evolutional process.

3. Evolution Model Driven by Flow for Weighted TRNs

In light of the empirical analysis results, we found that in essence, both the pas-

senger’s travel behavior and topological structure contribute to the evolution of

TRNs together. Here, we propose an evolution model driven by passengers’ travel

demands for weighted TRNs with consideration of flow dynamic behavior triggered

by topological change.

3.1. Modeling

Initial state: the original network is defined as an existing TRN with m0 stops/nodes

and e0 edges. The original edge weight wij(0) denotes the total volume of passen-
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gers’ demands on transit routes between two end stops i and j. The initial strength

of node i is si =
∑
j wij(0). In each time step, the routes will be generated according

to the following two regulations at the same time:

(1) Regulation 1: Generating routes by linking existing stops with probability p.

It means that the new routes are set up through extending from existing stops

with a probability p. There are two steps to achieve Regulation 1:

Step 1. Generating a route. A pair of nodes is selected from the existing net-

work and a new route is set up by linking these two selected nodes based

on the principle of flow-driven. As the transit service is always provided

for meeting the demands of passengers, i.e., the pathway of a transit route

must be consistent with the flow direction, a route should be extended

from a node with larger strength in which more trips are generated or

attracted. Thus, a node will be selected as one end of a new route with

the probability
∏

new→i = si∑
j sj

. For the other end of a route, we assume

that it is randomly selected from existing stops. The end of a route is not

necessarily the stop with larger flow due to the constraints, such as lo-

cations of bus terminals, passengers’ convenience of accessing. These two

ends are linked to form a new route, i.e., an edge. As choosing the node

with the most passenger flow as the starting or ending stop is reasonable

in real world, the nodes are allowed to be reselected. Thus, m edges are

linked between m pairs of nodes in turn.

Step 2. Dynamically evolving of passenger flow. (i) The weight of a new link

evolves. When a new route rij is added to the network, if there is no

link between two chosen nodes i, j, an edge with w weight will be linked

between i and j; if there exists one, its weight will be added additional

w. (ii) The nearby flow perturbation triggered by a new route. When

a new transit service is provided, it will lead to a flow perturbation δ

in nearby routes, which could be negative when the new route attracts

more passengers from nearby routes, or positive when more car users are

attracted to ride buses because of the improvement of transit network

connectivity. Provided δi, δj are the additional flow for nodes i, j triggered

by a new link wij , the strength of i, j will be adjusted to be si → si+δi+w,

sj → sj + δj + w respectively. For simplicity, only the neighboring routes

linked to i or j are triggered to generate flow perturbation, namely, the

weight between i and its adjacent node k, k ∈ v(i), or j and adjacent n,

n ∈ v(j), are readjusted to share the flow perturbation δi or δj according

to their original weight. The flow evolution will follow the regulation shown

in Fig. 8. For node i: wik → wik+∆wik, ∆wik = δi
wik

si
. Likewise, for node

j: wjn → wjn + ∆wjn and ∆wjn = δj
wjn

sj
.

Repeat Steps 1 and 2, m (m ≤ m0(m0−1)/2) pairs of stops will be selected

in turn from existing network, and m denotes the number of routes to be set up

at each time step. When the first pair of stops is selected, the flow distribution
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wss iii ++→ δ wss jjj ++→ δ

i w j 

n k 

Fig. 8. The rule of flow evolution triggered by linking a new route between node i and j.

will change in terms of aforementioned flow evolution principle in Step 2, then

the second pair of stops will continue to be selected from the new network.

According to this order, finally m pairs of stops are selected. Thus, m edges

are linked between m pairs of nodes to form m routes. Considering the rate

of route increase from the existing network, the probability p is introduced to

control the number of new route generation.

(2) Regulation 2: Generating routes by adding one new terminal with probability

1 − p. It denotes that m new routes are extended from a new terminal with a

probability 1− p. In this regulation, m nodes will be selected from the existing

network in turn according to the flow attraction principle, i.e., be selected with

probability
∏

new→i = si∑
j sj

, and a single new node will be added into the

network with a probability 1 − p. Then, m routes are generated by linking m

selected nodes to the new node. The weights w will be added to these m routes,

respectively. Likewise, the strength of a selected node i will be readjusted as

si → si + δi + w, and weights between node i and its neighboring nodes will

also be adjusted according to the rule of Fig. 8.

3.2. Theoretical analysis

Generally, there are three theoretical methods to solve the distribution of scale-

free network: the mean-field,33 the master equation34 and the rate equation.35 The

results solved by these methods are basically consistent. In the following, we will

use the mean-field theory to analyze the feature of strength distribution generated

by above evolution model. For simplicity, given w = w0. In terms of Regulation 1

in Sec. 3.1, we can reduce the rate equation of weight change in the network as

follows:

∂wij
∂t

=
mw0

Nt
× si∑

l sl
+
mw0

Nt
× sj∑

l sl
+

(
m

si∑
l sl

+
m

Nt

)
× δi

wij
si

+

(
m

sj∑
l sl

+
m

Nt

)
× δj

wij
sj

=
mw0

Nt

si + sj∑
l sl

+

(
m

si∑
l sl

+
m

Nt

)
× δi

wij
si

+

(
m

sj∑
l sl

+
m

Nt

)
× δj

wij
sj
. (2)

The first item of the right of Eq. (2) indicates that for the nodes i and j which we

consider to select, node i is selected with a preferential probability
∏

new→i = si∑
j sj

,
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while node j with a probability 1
Nt−1 as the present network scale is Nt. Note that

when Nt is very large, 1
Nt−1 ≈

1
Nt

. Every time a successful link makes the weight

wij increase w0, and there are m times to choose a pair of nodes. For the second

item, it is the case that node i is randomly selected whereas node j preferentially.

The third item denotes that once node i is selected with a random or preferential

probability, the flow perturbation around node i is triggered; vice versa, the last

item is the case that node j is selected.

In terms of Regulation 2 in the model, we obtain the rate equation of weight

change as follows:

∂wij
∂t

= m
si∑
l sl
× δi

wij
si

+m
sj∑
l sl
× δj

wij
sj
. (3)

According to the mean-field theory, the change rate of si in network should be

equal to the total increased strength triggered together by Regulations 1 and 2.

Thus, the change rate of si is:

∂si
∂t

= p
∑
j∈ν(i)


mw0

Nt

si + sj∑
l sl

+

(
m

si∑
l sl

+
m

Nt

)
× δi

wij
si

+

(
m

sj∑
l sl

+
m

Nt

)
× δj

wij
sj


+ (1− p)m

∑
j∈ν(i)

[
si∑
l sl

(
w0 + δi

wij
si

)
+

sj∑
l sl

δj
wij
sj

]
. (4)

For simplicity, given that δi = δj = δ. Based on the evolutional regulations, the

network scale N is the function of time, N(t) = m0 + (1 − p)t. When t is large

enough, the impact of m0 on the result can be neglected, i.e., N(t) = (1 − p)t.

Therefore, Eq. (4) can be expressed as:

∂si
∂t
≈ m

si∑
l sl

(w0 + δ − pw0) +
pm

N
(w0 + δ) +mδ

∑
j∈ν(i)

(
sj∑
l sl
× wij

sj

)

+
pmδ

N

∑
j∈ν(i)

wij
sj
. (5)

As the total change of strength in network triggered by the links between old

nodes and the new node with old one is 2[p(w0 + 2δ) + (1− p)(w0 + δ)] = 2(w0 +

pδ + δ), then
∑t
i=1 si(t) = 2m(w0 + pδ + δ)t. Based on the boundary condition

si(t = i) = mw0, we obtain the function of strength si(t) for node i as follows:

si(t) =
mAw0 +B

A
∗
(
t

i

)A
− B

A
, (6)

where A = w0+2δ−pw0

2(w0+pδ+δ)
, B = pm(w0+2δ)

1−p . According to Regulation 2 for adding a new

node, we get the probability distribution of ti:

P (ti) =
1

m0 + t
. (7)
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As the probability that strength si(t) for node i is less than S, is as follows:

P (si(t) < s) = P

(
ti > t ∗

(
mAw0 +B

sA+B

) 1
A

)
= 1− t

m0 + t ∗
(
mw0+B/A
s+B/A

) 1
A

(8)

Therefore, we obtain the probability density function P (s) of strength si(t) for

node i is:

P (s) =
∂P (si < s)

∂s
=

t

m0 + t
∗ (mw0 +B/A)

1
A

A ∗ (s+B/A)1+
1
A

(9)

When t −→∞, the strength distribution is approximately as follows:

P (s) ≈ (mw0 +B/A)
1
A

A ∗ (s+B/A)1+
1
A

(10)

According to Eq. (10), we find that when the network’s scale is large enough,

the node’s strength in the evolution model follows a power-law distribution with

an exponent γ = 1 + 1
A = δ(2p+4)+w0(3−p)

w0+2δ−pw0
, which agrees well with our empirical

analysis result in Sec. 2.2. Compared with BBV model,23 it corresponds to just

shifting a constant B/A. Obviously, when p = 0, the network is completely growing

and if w0 = 1, δ = 0, then γ = 3; if δ → +∞, then γ → 2. Therefore, the strength

of model follows atypical scale-free distribution with γ ∈ (2, 3]. At this point, it

corresponds to the classical BA model.10

In addition, according to the discovery of BBV model,23 there is a linear relation

between node’s degree ki and strength si, so the probability density distribution of

ki is approximately as follows:

P (k) ∝ (k + α)−γ . (11)

Namely, it has the same power-law exponents as the P (s), but just shifts a

constant α.

Table 1. Summary of the symbols.

No. Symbol Denotation

1 ki The degree of node i
2 wij The weight of edge between node i and j

3 si The strength of node i, si =
∑

j wij

4 m The number of new routes
5 m0 m0 nodes in existing network

6 e0 e0 edges in existing network

7 wij(0) The original edge weight wij(0)
8 p The probability of new routes generated from existing nodes
9 1 − p The probability of new routes generated by adding a new node to

existing network
10 δi The additional flow for nodes i triggered by a new edge eij
11 Nt Total number of nodes in the present network

12 γ The exponent of power-law distribution
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In order to understand above equations more clearly, here we summarize all the

symbols as shown in Table 1.

4. Numerical Simulation and Analysis on Impacts

of Flow Perturbation

According to Eq. (10), when p = 0, it means to extend new routes through es-

tablishing a new terminal, and then γ = 2 + w0

w0+2δ ; while p = 1, γ = 3 + w0

δ , it

denotes to open new routes based on existing stops. In this section, we will study

the impacts of flow perturbation δ on network’s flow distribution and topological

structure through numerical simulation when p ∈ (0, 1). We set an initial fully-

connected network with m0 = 10 nodes and random weights wij(0) ∈ (0, 1) as

travel demand on links between pairs of nodes. The evolution process is alternated

1000 times. Assume w0 = 1 for all following cases.

4.1. When flow perturbation δ ≥ 0

(1) When δ > w0, the new route should be arterial. The simulation results are

shown as Fig. 9 when p = 0.2 or p = 0.8. We find that whatever p and δ

are, the strength distribution plot is nearly linear on log–log scale, which is

consistent with our result of theoretical analysis, and similar with our empirical

results. But with the increment of δ, e.g., δ = 5, there is a slightly bowing

phenomenon of the head for distribution plots that is more similar with real

PTNs,20 indicating that the heterogeneity has decreased in the network; while

when δ → +∞, γ ∈ (2, 3), it is a typical scale-free network. In addition, when

p decreases, the exponent γ becomes smaller, i.e., γp=0.2 < γp=0.8, revealing

that when the new routes are opened mainly by establishing new terminals,

the network will become more heterogeneous.

In summary, when δ > w0, it reveals that the new route generates a sort

of multiplicative effect23 that is bursting great traffic on neighbors, so it corre-

sponds to an arterial route that attracts great flow of not only transit passengers

but also those diverted from other transportation modes, for instance, car user

trips. Since such routes have great impacts on neighbors’ flow, more attention

should be paid to them before opening or in operation.

(2) When δ ≈ w0, the new route should be feeder or community service. When

δ ≈ w0, γ ∈ (2 1
3 , 4), P (s) also follows a power-law distribution (shown in Fig. 9).

As δ ≈ w0, it indicates that the passenger flow generated by the new route is

totally assigned to nearby routes, and to get to the destinations, passengers need

to transfer between the new route rij and neighbors. Accordingly, the terminal

i or j mainly plays a role of transfer station, and the new route generally

provides feeder or community service that aims at improving the accessibility

of residents to bus transit network.

(3) When 0 ≤ δ < w0, the new route should be common or branch. As shown in

Fig. 10, when 0 ≤ δ < w0, P (s) follows a generalized power-law distribution.
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Fig. 9. When δ ≥ w0, the node’s strength distributions P (s) of network along the changes of

perturbation δ on log–log scales.

When p→ 1 [Fig. 10(b)], the bowing phenomenon of distribution plot gradually

appears with δ → 0, indicating that the network becomes much more homoge-

neous and there is a gradually transforming process from properties of scale-free

to small-world, which is consistent with our theoretical result γ ∈ [2 1
3 ,+∞). It
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Fig. 10. When 0 ≤ δ < w0, the node’s strength distributions P (s) of network along the changes

of perturbation δ on log–log scales.

reveals that the new route does not generate great perturbation on the network,

and most of attracted passengers can get to their travel destination without

transfer, only a little flow needs to transfer to neighbors through terminal i or

j. Thus, such routes are quite independent to the network and play a role to

improve the density and homogeneity of network.
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Fig. 11. When p = 0.2,δ > 0, the node’s degree and edge weight distributions along the changes
of perturbation δ on a log–log scale. (a) The node’s degree distribution P (k). (b) The edge weight

distributions P (w).

In light of above analysis, we found that the probability P mainly impacts the

exponent γ whereas it does not impacts network structure. Here, we just display

the simulation results of degree distribution P (k) and weight distribution P (w)

with p = 0.2. As shown in Fig. 11(a), it reveals that all P (k) display the scale-free
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property with different δ, though with the increment of δ, it becomes more hetero-

geneous, according to the linear slopes that negative value is equal to the exponent

γ. However, in Fig. 11(b), it’s the increment of δ that makes P (w) display more ev-

ident power-law behavior. It is because the neighboring perturbation flow triggered

by a new route increases greatly, indicating that both the flow on the neighboring

stations and routes are improved, consequently, the strength predominance of nodes

is enhanced and then these nodes will be preferentially attached in next round of

routes’ generation; likewise, a new increase for these nodes’ degree. It can explain

the fact that there are some hub stations existing in transit networks.

In summary, when δ > 0, with the increment of perturbation δ, not only the

topology but also the flow distribution will exhibit the scale-free property with

much more heterogeneity.

4.2. When flow perturbation δ < 0

As wij(0) ∈ (0, 1) and w0 = 1, firstly we simulate the case of −w0 ≤ δ < 0. As

shown in Fig. 12(a), when −w0 ≤ δ < 0 and δ 6= −0.5w0, the long-tailed behavior of

P (s) shows that the typical scale-free property with γ ∈ [2, 3] exists in the network.

It is because the decrement of neighboring flow is not larger than the additional

increment of new route’s flow, so the new route’s nodes still keep the preferential

characteristics. Moreover, when δ < −1, especially when δ → −∞, according to

Eq. (10), if p→ 1, then γ → 3; while p→ 0, γ → 2, which indicates that P (s) also

follows a power-law distribution. But in real transit networks, the case of δ → −∞
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Fig. 12. When p = 0.8, −w0 ≤ δ < 0, the node’s strength and edge weight distributions along
the changes of perturbation δ. (a) The node’s strength distributions P (s). (b) The edge weight

distributions P (w).
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Fig. 12. (Continued)

is unlikely to occur, because a new route that will result in a great decrement of

passenger flow in the whole network will not be allowed to open. Correspondingly,

for the edge weight, when δ < 0 and δ → 0 [shown in Fig. 12(b)], the heavy-tailed

behavior of its distribution p(w) shows more typical properties of scale-free.

Also, the simulation of degree distribution P (k) (Fig. 13) shows that when

−w0 < δ < 0 (w0 = 1), there exist scale-free property for P (k) with a heavy tail
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Fig. 13. When p = 0.2, δ < 0, the degree distributions P (k) of network along the changes of

perturbation δ on log–log scales.
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and nearly a line on a log–log scale. However, when δ < −w0, with decrement of

δ, the degree distribution becomes more homogeneous and all nodes approximately

possess the same degree. It reveals that when the perturbation δ triggers more

passenger flow decreasing, the heterogeneity of topological network will be weakened

after evolving.

To sum up, when δ < 0, meaning that the open of a new route leads to the

decrease of neighboring flow, it suggests that there may be some design flaws exist-

ing in the original network, for example, the great deviation of existing routes from

the spatial linear path (the measured index is called nonlinear coefficient), then

the new route is likely to make passengers minimize the transfers in neighboring

routes. In this case, the open of new route is helpful to reduce the deviation or non-

linear coefficient, and improve the passengers’ directness without transfer between

key origin-destination pair. So passengers tend to take their trips on the new route

rather than other existing routes, which is corresponding to decreasing flow on other

routes.

5. Conclusion

In this paper, we present a comparative investigation on the Beijing’s weighted

TRN in R-space based on passenger flow to provide an empirical basis for explor-

ing evolutional mechanism of TRNs. The power-law distributions both for degree

and strength reveal that not only the topologic structure, bus also the flow distribu-

tion of Beijing’s transit network in R-space are scale-free, even though the network

is evolving. Also, their shorter average path length and small clustering coefficients

further indicate that the TRNs exhibit scale-free property. Considering the topol-

ogy and flow distribution coupling interaction, we propose an evolution model of

weighted complex network for transit route system that is driven by passenger flow

and flow perturbation triggered by topological change. The results obtained by the-

oretical analysis and numerical simulation have proven that our model can generate

a TRN in R-space with scale-free properties for node’s strength and degree distri-

butions, which agrees well with our empirical results. With simulating the impacts

of flow perturbation on the network’s structure, we also can judge the function of

new routes, which can be exploited to define the role of a route and the impact

of passenger flow, so as to explore the countermeasures for routes’ planning and

adjustment in real transit networks much better.

However, this work is just a preliminary exploration of the evolutional mech-

anism for real networks. We simulated the evolutional process of transit networks

from the view of macro-layout, whereas the real networks are complicated and ex-

hibit much more diversity, in addition, the routing design and station locating are

always coupled with passenger flow closely. Accordingly, more impact factors in

the evolutional process should be further studied. Moreover, we regarded the new

route’s flow as a constant. The fact is that the flow is dynamic which may follow

some kinds of distributions. The more realistic flow behavior and other mapping
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models for weighted transit networks should be explored to reflect the real networks’

intrinsic properties more comprehensively.
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