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a b s t r a c t 

This paper investigates the robust train regulation problem for metro lines with a stochas- 

tic passenger arrival flow. The passenger arrival flow is assumed to be dependent on a dis- 

crete Markovian process. A constrained state-space model for the train traffic of a metro- 

line operation is developed from a system-theoretic standpoint. According to stochastic 

stability theory, we give a sufficient condition for the existence of state-feedback control 

as the train regulation strategy in terms of linear matrix inequalities, which ensures the 

stochastic stability of the train traffic of metro lines. By considering the uncertain distur- 

bances to the train operation, a robust train regulation strategy that guarantees that the 

practical train timetable tracks the nominal timetable with a disturbance attenuation level 

is designed, and the total delays of the trains at each station are reduced. Moreover, a non- 

linear optimization problem is formulated to determine the optimal robust train regulation 

strategy that ensures the minimization of the disturbance attenuation level. Numerical ex- 

amples are given to illustrate the effectiveness of the proposed methods. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

1.1. Motivation 

Urban metro transportation systems are an attractive mode of transports for relieving the traffic pressure in modern

large cities due to their inherent features of reliability, energy efficiency, sustainability and high capacity. It is well known

that high-frequency metro lines are naturally unstable because any deviation with respect to the nominal schedule of a

given train will be amplified with time, and consequently the operation of other trains will be disturbed [5,27] . On a high-

frequency metro line, passengers arrive randomly at the stations, and the train delays increase at each station with the

accumulation of passengers, leading to the instability of metro lines. In addition, the uncertain disturbances to the run-

ning time and dwell time of the train will also lead to instabilities of metro lines, such as system abnormality, inadequate

driver/passenger action and so on [22] . By manipulating the running time and the dwell time of each train, train regulation

attempts to recover train delays and prevent the instability of metro line operations. Moreover, because of their intrinsically

stochastic characteristic and instability, the robustness of the train regulation system against the stochastic passenger flow

fluctuations and uncertain disturbances is an important factor affecting the capacity utilization and the service quality for
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highly homogeneous metro lines. Therefore, a robust train regulation design is necessary to prevent such instabilities, both

from the passenger and company viewpoints. 

The discrete event model is a more suitable class of mathematical models for describing the dynamic performance of the

train traffic of metro lines [27] . The corresponding variables are related to both trains and stations. The train traffic model

based on discrete events can be regarded as a discrete-stage equation, which can well describe the dynamic train traffic

flow of metro lines. Based on the discrete-stage equation, one can apply modern control theory to address the stability

condition of the train traffic. In addition, in contrast to large-scale transportation systems mainly involving dynamic vehicle

flows from a macroscopic perspective [21,29] , the passenger arrival flow will affect the stability of high-frequency metro

lines. Therefore, it is necessary to consider the effects of both vehicle flow (trains) and passenger flow for metro lines.

Consider that the passenger arrival rate is stochastically changing at different stages of stations. Markovian processes, with

a characteristic property that is sometimes stated as “the future depends on the past only through the present”, are good

models for many stochastic systems, including certain queuing systems, inventory systems and reliable systems [15,23] .

Similarly, as a special case of queuing systems, the passenger arrival rate at different stages of stations can be assumed to

be dependent on a discrete Markovian process, and the probability transition matrix will be obtained using historical data.

Due to effects of the stochastic passenger flow on the dwell time of a train, a train traffic model considering the dwell time

of the train is therefore formulated using a stochastic discrete dynamic system with Markovian jumping parameters, and the

stochastic stability will be derived using stochastic stability theory [11] . Moreover, we can denote the uncertain disturbance

to the train delays as an unknown-but-bounded quantity with finite energy [27] . Then, the so-called robust control theory

can be applied to guarantee that the train traffic model has a smaller prescribed disturbance attenuation level with respect

to the uncertain disturbances [10,31] . This motivates the idea to design a robust train regulation strategy for metro lines

with stochastic passenger arrival flows and uncertain disturbances within the framework of robust control theory. 

1.2. Some related literature and contributions 

In train regulation, the buffer times or supplements in the timetable are usually designed to absorb the train delays re-

sulting from disturbances [1,28] . However, the buffer time allocation is static and cannot be used dynamically and flexibly

from a system-wide point of view. This may reduce system capacity utilization for the possible redundant buffer time. In

particular, automatic train regulation (ATR) is used to recover the schedule/headway deviations resulting from disturbances

by dynamically adjusting the running time and dwell time of each train in real time, thereby reducing the potential redun-

dant buffer time and improving the system capacity utilizations. Recently, a number of automatic train regulation methods

were proposed for metro lines [6,7,13,16,32] . Van Breusegem et al. [27] proposed a complete discrete-event traffic model for

metro lines, in which the state feedback control algorithm was designed by solving an optimization unconstrained quadratic

problem, which ensures the system stability and the minimization of a given performance index. Followed by the discrete-

event traffic model, Chang and Chung [6] applied a genetic algorithm to efficiently solve the train rescheduling problem.

By quadratic programming, Fernandez et al. [12] addressed a predictive traffic regulation model for metro loop lines to op-

timize a cost function along a time horizon, and the proposed quadratic programming model can be solved efficiently in

real time. A new methodology for the computation of the optimal train schedules in metro lines was proposed by Assis and

Milani [2] with a linear-programming-based model predictive control, which generates the optimal schedule for a whole

day operation. From the passenger perspective, Goodman and Murata [14] considered a constrained nonlinear programming

for metro traffic regulation. Dorfman and Medanic [9] developed a local feedback-based travel advance strategy for train

advances along lines of the railway, and the proposed approach can quickly handle the perturbations in the schedule. By

using dual heuristic dynamic programming, Lin and Sheu [22] proposed an automatic train regulation, and a near-optimal

regulation was obtained more rapidly and accurately. A cooperative scheduling approach was developed to optimize the

timetable by Yang et al. [30] , in which the recovery energy generated by braking train can be directly used by accelerating

train, which achieved the energy-saving of the subway systems. 

Clearly, many efficient train regulation techniques have been proposed to optimize the performance index for metro

lines. However, in most studies, the passenger arrival flow at the stations is assumed to be a constant or pre-known vari-

able [2,22,27] . In practice, the passenger arrival flow is dynamically and stochastically changing at the stations, especially

during peak hours. It is reasonable to apply a stochastic process to describe the dynamic changing of the passenger arrival

flow. Moreover, the uncertain disturbances will lead to an instability of high-frequency metro lines. Therefore, the robust-

ness of train regulation against uncertain disturbances is an important problem for improving the capacity utilization and

service quality of metro lines. To address this problem, the robustness of train regulation problems has received substantial

attention by researchers, By considering a service disruption on a single-track rail line, Meng and Zhou [24] proposed a

robust disruption handling method to minimize the expected additional delay under different forecasted operational con-

ditions based on a stochastic programming method. Shafia et al. [26] derived a new robust train-timetabling problem in a

single-track railway line, and presented a branch-and-bound algorithm along with a new heuristic beam search algorithm to

solve the model for large-scale problems, which can effectively find a near-optimum solution in a rational amount of time.

The existing literature on the robustness of the train regulation problem against uncertain disturbances mainly addresses

small train delays using a buffer time. However, for larger train delays, few studies can be found to address the robust train

regulation problem for metro line systems with uncertain disturbances. For this type of uncertain disturbance problem, the

so-called robust control method can be effectively applied to guarantee the stability of the dynamic systems, while ensuring
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Fig. 1. The structure of the metro line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a smaller prescribed disturbance attenuation level with respect to the uncertain disturbances [3,25] . This is suited for the

state-space train traffic model of the metro line systems. 

In this research, we will focus on the robust train regulation of metro lines with a stochastic passenger arrival flow

within the framework of robust control theory. The contributions of this paper are as follows. 

1. By assuming that the stochastic passenger arrival flow is dependent on a discrete Markovian process, a constrained

discrete state-space model for the train traffic of metro line systems is developed. The stochastic passenger flow will

lead to the instability of the metro line. Based on stochastic stability theory, we present the stochastic stability condition

for the train traffic subject to control constraints. 

2. For the uncertain disturbances leading to the delays of train traffic, we define an H ∞ 

disturbance attenuation level γ
as the robustness of the deviations of the actual timetable from the nominal schedule. The existence condition for the

robust train regulation strategy is given in terms of linear matrix inequalities theoretically, and can be easily solved by

Matlab LMI Tools. 

3. By regarding the H ∞ 

disturbance attenuation level as the optimization performance, a nonlinear optimization problem is

formulated to determine the optimal robust train regulation strategy that guarantees the minimized disturbance attenu-

ation level to reduce the total train delays. To solve this optimization problem, we design an effective iterative algorithm

to generate the robust train regulation strategy with a smaller H ∞ 

disturbance attenuation. 

The rest of this paper is organized as follows. In Section 2 , the train traffic model with stochastically dynamic passenger

arrival flow and uncertain disturbances is presented. In Section 3 , the stochastic stability of the metro line is analysed, and

the robust train regulation is designed. In Section 4 , numerical examples are provided to demonstrate the effectiveness of

the proposed methods. We conclude this paper in Section 5 . 

2. Problem description 

Consider a metro line with N + 1 stations and N sections, and an ordered set of trains are running on the sections

and stop at the stations to allow passengers to get on and off. In this paper, we restrict our studies to a metro line with

a sequential line structure, in which trains start from the first station and leave the line after station N . The considered

structure of the metro line is shown as Fig. 1 . 

Throughout this paper, the following assumptions are made in order to formulate the problem. 

(A1) The running time of a train between two successive stations does not depend on the number of passengers on the

train; 

(A2) The dwell time of a train at a station is affected by the number of passengers getting on the train; 

(A3) The average passenger arrival rate at each station of the metro line is dependent on a discrete Markovian process in

a special period (such as peak hours). 

Assumption A1 is rational because the running time of a train is mainly affected by the traction force of the train,

rather than the number of passengers on the train. Assumption A2 is reasonable because, in practice, the dwell time of

the train at the station increases proportionally to the number of passengers getting on the train. In addition, Assumptions

A1 and A2 can be replaced by more sophisticated assumptions, for instance, by considering the effect of the number of

passengers getting off the train on the dwell time of the train. However, these more sophisticated assumptions are not

significantly different as far as train regulation analysis is concerned. For Assumption A3, we choose a Markovian process

to describe the dynamic changing and random characteristic of the passenger arrival flow. To prove the rationality of this

assumption, we collected practical data on the passenger arrival flow of one station on the Yizhuang metro line for the

morning peak hours and proved the rationality of this assumption via the method of χ2 hypothetical testing for the discrete-

time Markovian process in the following numerical examples. In addition, a Markovian model for describing the dynamic

changing of the passenger arrival flow will reduce the conservativeness of the stability condition of the metro line system.

If a non-Markovian model, such as an arbitrary switching model, is used for the passenger average arrival rate, a more

conservative condition will be obtained for the stability of the metro line system. 

For the operation of train traffic in metro line, the symbols and parameters are listed below. 

i = 1 , 2 . . . , M: indices of trains on the line; 
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k = 1 , 2 , . . . , N: indices of stations on the line; 

t i 
k 
: the departure time of the i -th train from the k -th station; 

r i 
k 
: the running time of the i -th train from the k -th station to k + 1 -th station; 

s i 
k 
: the dwell time of the i -th train at the k -th station; 

R i 
k 
: the nominal running time of the i -th train from the k -th station to the k + 1 -th station; 

D k : the minimal dwell time at a station when no passenger gets on the train; 

T b : the buffer time of the train at each station. 

2.1. The train traffic model of metro lines 

To study the train regulation problem, this paper first considers a given nominal timetable. Let a nominal timetable T i 
k 

be the departure time of each train i at each station k . Then, we have the following transfer equation. 

T i k +1 = T i k + R 

i 
k + a k +1 λk +1 (T i k +1 − T i −1 

k +1 
) + D k +1 + T b , (1) 

where a k is the average boarding time of per passenger at the station, R i 
k 

is the nominal running time of the i -th train from

the k -th station to the k + 1 -th station, λk is the passengers average arrival rate of the time interval, and the unit is the

number of passengers per second, D k +1 is minimal dwell time of the train at station k + 1 and T b is the buffer time of the

train at station k + 1 . The nominal timetable is characterized by a constant time interval H between two successive trains,

i.e., H = T i 
k +1 

− T i −1 
k +1 

. The transfer Eq. (1) can be further rewritten as 

(1 − a k +1 λk +1 ) T 
i 

k +1 = T i k + R 

i 
k − a k +1 λk +1 T 

i −1 
k +1 

+ D k +1 + T b . (2) 

Moreover the practical departure time of the i -th train from the k + 1 -th station is given as 

t i k +1 = t i k + r i k + s i k +1 , (3) 

which shows that the departure time of the i -th train from the k + 1 -th station is determined by the running time r i 
k 

of the

i -th train from k -th to k + 1 -th station and the dwell time s i 
k +1 

of the i -th train at station k + 1 . 

By Assumption A1, the running time of the i -th train from k -th to k + 1 -th station is formulated as 

r i k = R 

i 
k + u 1 

i 
k + w 1 

i 
k , (4) 

where u 1 
i 
k 

is the control strategy used to magnify the running time of the i -th train between the k -th and k + 1 -th stations,

which is used to increase the running time when u 1 
i 
k 

> 0 and decrease the running time when u 1 
i 
k 

< 0 . u 1 
i 
k 

is subject

to speed limit and safety requirement constraints. w 1 
i 
k 

is the uncertain disturbance term in the running time, which is

supposed to be of finite energy, i.e., 
∑ ∞ 

k =1 w 1 
i 
k 
w 1 

i 
k 

< ∞ . 

According to Assumptions A2–A3, the dwell time increases proportionally to the number of passengers getting on the

train. Thus, the dwell time depends on the passenger arrival rate and the time interval between the departure of the pre-

ceding train and the arrival of the current train, which is modelled as 

s i k = a k λk (t i k − t i −1 
k 

) + D k + u 2 
i 
k + w 2 

i 
k , (5) 

where t i 
k 

− t i −1 
k 

is the time interval between the departure of the preceding train and the arrival of the present train, u 2 
i 
k 

is

the dwell time adjustment on train i at station k , which is subject to constraints, and w 2 
i 
k 

is the uncertain disturbance term

to the dwell time, which is also finite energy. 

The proposed form of the dwell time (5) is different from the existing results in [22,27] , which further considers the

dynamically stochastic characteristic of the passengers arrival rates. At different operation stages of the stations in metro

lines, the average passenger arrival rate is dynamically changing and dependent on discrete-time Markovian process, which

leads to the fact that the dwell time of the train is changing randomly at different operation stages of the stations. In

addition, for the passenger arrival rate λk , we can guarantee a maximum allowance passenger arrival rate by limiting the

maximum value of λk to satisfy the limited capacity of the train for carrying passengers. 

To investigate the train regulation problem using control theory conveniently, we develop a state-space formulation for

the train traffic model. Combining (3) –(5) , a state-space representation for the train traffic model is described as 

(1 − a k +1 λk +1 ) t 
i 
k +1 = t i k − a k +1 λk +1 t 

i −1 
k +1 

+ D k +1 + R 

i 
k + u 1 

i 
k + u 2 

i 
k +1 + w 1 

i 
k + w 2 

i 
k +1 . (6) 

The train traffic model (6) describes the practical local dynamic characteristic of the traffic behaviour related to two

successive trains and two successive stations, as shown in Fig. 2 . To satisfy the traffic security requirements, overtaking of

trains is not allowed. Moreover, the proposed train traffic model (6) involves both the train traffic flow and the passenger

flow. It should be noted that the proposed train traffic model (6) involves both the i -th and the i − 1 -th trains, where the

departure time of train i at station k + 1 is affected not only by its departure time at station k , but also by the departure

time of its preceding train i − 1 at station k + 1 . According to the proposed train traffic model, if one train is delayed, the

following trains will also be affected, and the train delay will be potentially propagated to all the other following trains.

Thus, the train traffic can affect all the other trains, which indicates the interconnection characteristics of the train traffic
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Fig. 2. The illustration of the traffic transition equation (6) . 

Fig. 3. The illustration of the train traffic flow of the metro line. 

 

 

 

 

 

 

 

 

 

 

 

flow for metro lines. This situation also coincides with the practical operations of high-frequency metro lines. In addition,

to prevent the collision among trains, similar to the assumptions of safety constraints given for the train traffic model

by Van Breusegem et al. and Lin and Sheu [22,27] , we also consider the assumptions of safety constraints to prevent the

train collision for the train traffic model (6) . (1) At the initial stage, all the trains keep the safety headway distance. (2)

The admission control actions and disturbances are bounded in order to always satisfy the security requirement to prevent

collisions among trains. 

To demonstrate the evolution of the train traffic flow clearly, the illustration for the train traffic flow is plotted in Fig. 3 ,

which indicates that the departure time of each train for the train traffic flow transfers from one station to the next in

metro lines, and any two neighbouring trains ensure a safety distance to satisfy traffic security requirements. 

To guarantee that the trains are operating according to the nominal timetable, we introduce x i 
k 

as the deviation variable

of the actual departure time t i 
k 

from the nominal value T i 
k 
, i.e., x i 

k 
= t i 

k 
− T i 

k 
. Then, by subtracting Eq. (2) from (6) , one can

obtain the error state-space model for the transfer of the i -th train as follows. 

(1 − a k +1 λk +1 ) x 
i 
k +1 = x i k − a k +1 λk +1 x 

i −1 
k +1 

+ u 

i 
k + w 

i 
k , (7)

where u i 
k 

= u 1 
i 
k 

+ u 2 
i 
k +1 

− T b and w 

i 
k 

= w 1 
i 
k 

+ w 2 
i 
k +1 

. From the system-theoretic standpoint for the error state-space model

(7) , it is convenient to apply the discrete dynamic system theory to study the train regulation problem for metro lines. 
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2.2. Stochastic passenger arrival flow 

Under the hypothesis of the random arrival of passengers, at each stage, the passenger arrival flow is assumed to follow

a Poissonian distribution with the average passenger arrival rate, and the average passenger arrival rates at different stages

are assumed to satisfy a discrete Markovian process. Let θ ( t ) be a Markovian chain taking values in a finite state space

S = 1 , 2 , . . . , s with probability transition matrix � = (πmn ) s ×s given by 

Pr { θ (t + 1) = n | θ (t) = m } = πmn , ∀ m, n ∈ S, (8) 

where πmn ≥ 0, 
∑ s 

n =1 πmn = 1 , and t represents the different stages. 

Within the framework of the discrete Markovian process, the dwell time s i 
k 

can be rewritten as 

s i k (θ (t)) = a k λ(θ (t))(t i k − t i −1 
k 

) + D k + w 2 
i 
k , (9) 

where θ ( t ) is the stochastic switching mode at stage t , which shows that the dwell time s i 
k 
(θ (t)) is dynamically and stochas-

tically switching at different stages of the stations with a discrete Markovian jumping parameters. To simplify the analysis,

we assume here that the passenger arrival rate at each station is characterized by the same probability transition matrix.

Metro lines are well known to be naturally unstable, and the stochastic switching of the dwell time will aggravate the de-

lays of trains with respect to the nominal timetable. To address this problem, the definition of the stochastic stability of the

discrete Markovian system is given as follows [11] . 

Definition 2.1. Consider the following discrete time Markovian system 

x t+1 = H(θ (t)) x t , (10) 

where θ ( t ) is a finite state time-homogenous or time-inhomogeneous Markovian chain with state space S . Let (�, F , P)

denote the underlying probability space and let 	 be the collection of all probability distribution on S . E{ ·} stands for the

mathematical expectation operator with respect to the given probability measure P . The discrete time Markovian system

(10) is said to achieve stochastic stability if for any initial condition x (0) and any initial probability distribution θ (0) ∈ 	, 

lim 

t→ + ∞ 

E {‖ x t (x (0) , θ (0) ‖ 

2 } = 0 . (11) 

Concerning the instability of metro lines with stochastic passenger arrival flow, Definition 2.1 provides the stochastic sta-

bility condition for addressing the instability problem of the train traffic. The reference by Fang and Loparo [11] introduced

several necessary and sufficient conditions for stochastic stability in the form of Lyapunov functions. To conveniently apply

the Lyapunov functions of modern control theory, we will further define the matrix form of the train traffic model with

stochastic dynamics. 

2.3. The matrix form of the train traffic model 

There are three main train traffic models for metro lines [27] : the stations sequential model(SSM), the train sequential

model (TSM), and the real-time model (RTM). Among these three models, real-time model (RTM) is the only model that

provides complete on-line feedback control [27] . Therefore, in this paper, we will adopt real time model (RTM) to describe

the train operations. According to (7) –(9) , we now propose the formulation for the train traffic model based on information

propagations considerations, i.e., t i 
k +1 

is generated by t i 
k 

and t i −1 
k +1 

for all trains and stations. Then, the matrix form of the

train traffic model with stochastic dynamics can be expressed as 

t k +1 = A (θ (k )) t k + B (θ (k )) u k + B (θ (k )) w k + R + D, (12) 

where k indexes the stage of the train traffic model, θ ( k ) represents the stochastic switching mode at

stage k , t k = [ t k −1 
1 

, t k −2 
2 

, . . . , t k −N 
N 

] T , u k = [ u k 
0 
, u k −1 

1 
, . . . , u k −N+1 

N−1 
] T , w k = [ w 

k 
0 
, w 

k −1 
1 

, . . . , w 

k −N+1 
N−1 

] T , R = [ R 0 , R 1 , . . . , R N−1 ] 
T , D =

[ D 1 , D 2 , . . . , D N ] 
T , T k = [ T k −1 

1 
, T k −2 

2 
, . . . , T k −N 

N 
] T , 

A (θ (k )) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

− c 1 (θ (k )) 

1 − c 1 (θ (k )) 
0 0 0 · · ·

1 

1 − c 2 (θ (k )) 
− c 2 (θ (k )) 

1 − c 2 (θ (k ) 
0 0 · · ·

· · · · · · · · ·

0 · · · 0 

1 

1 − c N (θ (k )) 
− c N (θ (k )) 

1 − c N (θ (k ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

N×N 

, 
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Fig. 4. The diagram of automatic train regulation system. 
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B (θ (k )) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 

1 − c 1 (θ (k )) 
0 0 · · ·

0 

1 

1 − c 2 (θ (k )) 
0 · · ·

· · · · · · · · ·

0 · · · · · · 1 

1 − c N (θ (k ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

N×N 

, c j (θ (k )) = a j λ(θ (k )) , j = 1 , 2 . . . , N

In addition, it should be noted that according to the original error state-space model (7) for the transfer of each train,

we can observe that the coefficients of u i 
k 

and w 

i 
k 

are equal. Thus, by converting the original error state-space model (7) to

the matrix form of the train traffic model (12) , the system parameter B ( θ ( k )) for u k and w k still take the same form. 

According to the matrix form of the train traffic model (12) , it is obvious that the system dimension is N , which is

equivalent to one less than the number of the stations and is not related to the number of trains. Moreover, the matrix

form of the error state-space model for the transfer of the i -th train from the k -th to k + 1 -th station is obtained as 

x k +1 = A (θ (k )) x k + B (θ (k )) u k + B (θ (k )) w k , (13)

where x k = [ x k −1 
1 

, x k −2 
2 

, . . . , x k −N 
N 

] T , which for notation simplicity is denoted as x k � [ x k 1 , x k 2 , . . . , x kN ] 
T . 

Under the framework of the state-space formulation, the error departure time x k is the state variable, the adjustment of

the running time and dwell time u k is the control input variable, and the uncertain event w k is the disturbance. A ( θ ( k )) and

B ( θ ( k )) are the system parameters. The automatic train regulation design problem is formulated as a control system design

problem. The control diagram of the automatic train regulation system is plotted in Fig. 4 . The goal is to design the control

input u k such that the practical train timetable tracks the nominal timetable with respect to the uncertain disturbances to

reduce the total train delays. 

Remark 2.1. The error state-space model (13) is a stochastic discrete dynamic system, which describes the dynamic evolu-

tion of the deviations of the actual timetable from the nominal timetable. The problem of the actual train timetable tracking

the nominal timetable is then converted into the stability problem of a stochastic discrete dynamic system. It is convenient

to study the train regulation problem using the stability theory of the stochastic discrete dynamic system. Furthermore,

for the uncertain disturbances leading to the delays, based on the robust control theory, we will present the robust train

regulation problem for metro lines in the next section. 

2.4. The robust train regulation problem 

In practice, the instability of metro lines will be amplified with time and the operation of other trains will be disturbed,

leading to the deviations of the trains from the nominal timetable and reducing the train operation efficiency. To improve the

train operation efficiency, we would like the controller to force the practical train timetable to track the nominal timetable

by rejecting the effect of the uncertain disturbances to reduce the total train delays. To address this, we choose the robust

state feedback control for the train regulation as 

u k = K(θ (k )) x k , (14)

where K ( θ ( k )) is the control parameter to be determined. It shows that the control form (14) is an on-line state feedback

control that is implementable: the control to be applied to the i -th train between the k -th and k + 1 -th stations is a linear

combination of deviations x 
β

with α + β = i + k . These deviations are known nearly simultaneously, which enables real-time
α
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practical implementation of a state feedback control policy. In practical operations, at each stage k , we can easily obtain the

practical departure time t k of trains using real-time monitoring technology. For the given nominal departure time T k , we

can further calculate the error departure time x k = t k − T k , i.e., the delay feedback information of the trains at stage k . Then,

based on the train delay feedback information x k at stage k , we can calculate the value of the controller u k according to

the proposed train regulation algorithm in the next section. The obtained value of controller u k is then used to regulate the

running time and dwell time of trains according to the train model (13) to recover train delays. Because the control form

(14) involves all stopping times at all stations, it is a global control. Moreover, it is shown that the proposed regulation

strategy for train i at station k , where i + j = k + 1 , is based on all the time deviation information x i 
k 

relative to index

i + k = j, which will efficiently provide coordinated control of all the trains running on the metro lines. 

Consider that the regular linear quadratic regulator (LQR) formulation cannot be used for a system with uncertain dis-

turbances. To study the problem of the practical timetable tracking the nominal timetable with respect to the uncertain

disturbances, we adopt the H ∞ 

control theory to study the robust train regulation problem. H ∞ 

control guarantees not only

that the system is stable, but also that the system has a smaller prescribed H ∞ 

disturbance attenuation level [3,20] . Ac-

cording to the H ∞ 

control theory, the robust train regulation problem in metro lines in this paper can be formulated as the

following definition. 

Definition 2.2. For the error state-space model (13) , given a prescribed H ∞ 

disturbance attenuation level γ > 0, obtain

the control gain K ( θ ( k )) such that the error state-space model (13) with w k = 0 is stochastically stable, and the following

condition holds 

E 

{ 

∞ ∑ 

k = k 0 
x T k x k 

} 1 / 2 

≤ γ

( 

∞ ∑ 

k = k 0 
w 

T 
k w k 

) 1 / 2 

(15) 

under the zero initial condition for any nonzero w k with finite energy, where k 0 is the initial stage. 

According to the H ∞ 

theory, the robustness of the deviations of the actual timetable from the nominal timetable is

measured by an H ∞ 

disturbance attenuation level γ . Then, the objective function is a desirable robustness performance in

terms of the H ∞ 

measure, which is used for reducing the total train delays. Moreover, by Definition 2.2 , we can also get

that 

E 

{
∞ ∑ 

k = k 0 
x T 

k 
x k 

}1 / 2 

(
∞ ∑ 

k = k 0 
w 

T 
k 

w k 

)1 / 2 
≤ γ , (16) 

which shows that the robustness performance γ is an upper bound of the proportion of the accumulated delays to the

accumulated disturbances. Thus, γ can be regarded as a robustness measure of the effect of the uncertain disturbances on

train delays. By minimizing the value of γ , one can minimize the accumulated train delays under the maximum allowable

uncertain disturbances to improve the robustness of the train regulation strategy. However, the commonly used objective

function only includes the accumulated train delays. By comparison, the adopted γ is used to improve the robustness of the

train regulation strategy while reducing the accumulated train delays under all allowable disturbances, thereby improving

the previous objective function, which is only for reducing the accumulated train delays. Moreover, the multi-step index

of the robustness performance is considered, which is different from that in [27] by adopting the simple one-step-ahead

performance index. 

Additionally, the control input u k will be under some constraints for the physical limitations of the actuators and the

safety constraints. For this purpose, the control input u k is assumed to satisfy the following constraints 

−ǔ l ≤ u kl ≤ ˆ u l , (17) 

where u kl is l -th elements of the control input u k , and ǔ l and ˆ u l are known positive constants. Considering the fact the train

can go much slower, but not much faster, it holds that ǔ l < ˆ u l . 

The goal of robust train regulation is to develop the state feedback control that satisfies all the constraints to track the

nominal timetable by rejecting the effect of uncertain disturbances. To solve this problem, we formulate it as an H ∞ 

control

problem and synthesize the state feedback control as the robust train regulation strategy that assures the H ∞ 

tracking

performance. 

3. Robust train regulation for metro lines 

In this section, based on the stochastic stability theory and robust control method, we will study the robust train regu-

lation for metro lines with the stochastic passenger arrival rate and uncertain disturbances. 
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3.1. Stochastic stability condition 

First, we will present the stochastic stability condition for the metro line under the control constraint when the uncertain

disturbance w k = 0 as the following proposition. 

Proposition 3.1. Consider the error state-space model (13) for the metro line with N + 1 stations and w k = 0 . Let k 0 be the initial

stage of the metro line. If there exist positive definite matrices X ( i ), Z ( i ), and any matrices Y (i ) , i = 1 , 2 , . . . , s with appropriate

dimensions such that the following linear matrix inequalities (LMIs) hold [−X (i ) �1 (i ) 

�T 
1 (i ) −�2 (i ) 

]
< 0 , (18)

[ 

1 x T 
k 0 

x k 0 X (θ (k 0 )) 

] 

≥ 0 , (19)

[
Z(i ) Y (i ) 

Y T (i ) X (i ) 

]
≥ 0 , (20)

Z ll (i ) ≤ ū 

2 
l , (21)

where 

�1 (i ) = [ 
√ 

πi 1 (X (i ) A 

T (i ) + Y T (i ) B 

T (i )) , 
√ 

πi 2 (X (i ) A 

T (i ) + Y T (i ) B 

T (i )) , . . . , 
√ 

πis (X (i ) A 

T (i ) + Y T (i ) B 

T (i ))] , 

�2 (i ) = diag { X (1) , X (2) , . . . , X (s ) } , (22)

ū l = 

ˆ u l + ̌u l 
2 − | ˆ u l −ǔ l 

2 | , and Z ll ( i ) denotes the l-th diagonal element of the matrix Z ( i ), then the state feedback control u k =
 (i ) X −1 (i ) x k is obtained as the train regulation strategy such that the error state-space model (13) is stochastically stable subject

to the control constraint (17) . 

Proof. For the error state-space model (13) with w k = 0 under the initial condition x k 0 and the initial state θ ( k 0 ), construct

the following Lyapunov function candidate 

V (k ) = x T k P (θ (k )) x k , k ≥ k 0 , (23)

where P ( θ ( k )) > 0. 

Let the stochastic switching mode at stage k be i , that is θ (k ) = i . Recall that at the next stage k + 1 , the system may

jump to any mode θ (k + 1) = j. One can then obtain that 

�V (k ) = E { V (x k +1 , θ (k + 1)) } − V (x k , θ (k )) 

= E { x T k +1 P (θ (k + 1)) x k +1 | θ (k ) = i } − x T k P (i ) x k 

= (A (i ) x k + B (i ) K(i ) x k ) 
T 

s ∑ 

j=1 

πi j P ( j)(A (i ) x k + B (i ) K(i ) x k ) − x T k P (i ) x k 

= x T k [(A (i ) + B (i ) K(i )) T 
s ∑ 

j=1 

πi j P ( j)(A (i ) + B (i ) K(i ))] x k − x T k P (i ) x k . (24)

Here it should be pointed that the term V ( x k , θ ( k )) at the current stage k is a determinate value and there is no expectation

E for the term V ( x k , θ ( k )), while at the next stage k + 1 , the system mode may randomly jump to any mode θ (k + 1) = j( j =
1 , 2 , . . . , s ) , so the term V (x k +1 , θ (k + 1)) at the next stage k + 1 is a random variable, and the expectation E has been used

for the term V (x k +1 , θ (k + 1)) . 

In addition, by variable substitution, let X(i ) = αP −1 (i ) , Y (i ) = K(i ) X(i ) , where α > 0. According to Schur Complement

[4] , pre and post-multiplying both sides of (18) by diag { α1 / 2 X −1 (i ) , α−1 / 2 I, α−1 / 2 I, . . . , α−1 / 2 I} , one can obtain that the in-

equality (18) is equivalent to the following inequality 

(A (i ) + B (i ) K(i )) T 
s ∑ 

j=1 

πi j P ( j)(A (i ) + B (i ) K(i )) − P (i ) < 0 . 

Thus, by (24) , we have �V ( k ) < 0 for all stages k ( k ≥ k 0 ). According to Definition 2.1 and Lyapunov stability theory, the

error state-space model (13) is stochastically stable. 

Moreover, by Schur Complement [4] , inequality (19) is equivalent to 

x T k P (θ (k 0 )) x k 0 ≤ α. (25)

0 
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Pre and post-multiplying both sides of (20) by diag { I, X −1 (i ) } , one can get that (20) is equivalent to [
Z(i ) K(i ) 

K 

T (i ) α−1 P (i ) 

]
≥ 0 . (26) 

According to �V ( k ) < 0 for all stages k ( k ≥ k 0 ), it follows from (24) and (25) that, for all stage k > k 0 , one has 

V (k ) < V (k 0 ) 

= x T k 0 P (θ (k 0 )) x k 0 

≤ α. (27) 

In addition, the control constraint (17) can be rewritten as − ˆ u l + ̌u l 
2 ≤ u kl (i ) − ˆ u l −ǔ l 

2 ≤ ˆ u l + ̌u l 
2 , i.e., | u kl (i ) − ˆ u l −ǔ l 

2 | ≤ ˆ u l + ̌u l 
2 .

Since | u kl (i ) − ˆ u l −ǔ l 
2 | ≤ | u kl (i ) | + | ˆ u l −ǔ l 

2 | , the control constraint (17) can be guaranteed by the inequality | u kl (i ) | ≤ ˆ u l + ̌u l 
2 −

| ˆ u l −ǔ l 
2 | . 
Note that 

‖ u kl (i ) ‖ 

2 = ‖ K l (i ) x k ‖ 

2 = ‖ K l (i ) P −
1 
2 (i ) P 

1 
2 (i ) x k ‖ 

2 

≤ K l (i ) P −1 (i ) K 

T 
l (i ) x T k P (i ) x k 

≤ K l (i ) P −1 (i ) K 

T 
l (i ) V (k 0 ) 

≤ K l (i ) P −1 (i ) K 

T 
l (i ) α, (28) 

where K l ( i ) represents the l -th row of the matrix K ( i ). 

It is shown from (21) and (26) that 

αK(i ) P −1 (i ) K 

T (i ) ≤ Z(i ) , Z ll (i ) ≤ ū 

2 
l , (29) 

where ū l = 

ˆ u l + ̌u l 
2 − | ˆ u l −ǔ l 

2 | , which implies from (28) that u kl (i ) ≤ ˆ u l + ̌u l 
2 − | ˆ u l −ǔ l 

2 | , i.e., the control constraint (17) is satisfied. 

Therefore, the error state-space model (13) for the metro line with constraint (17) and w k = 0 is stochastically stable, and

the state feedback control u k = K(i ) x k , k ≥ k 0 is obtained as the train regulation strategy. �

Remark 3.1. Proposition 3.1 provides a sufficient condition to choose the proper state feedback control u k = K(i ) x k , k ≥
k 0 as the train regulation such that the metro line system is stochastically stable under w k = 0 . Note that the sufficient

conditions (18) –(21) in Proposition 3.1 take the form of linear matrix inequalities. It can be easily solved using an interior-

point algorithm. The control to be applied to train i at station k , where (i + k = j + 1) , involves all the time deviations

x i 
k 

relative to index i + k = j, which will efficiently achieve the coordinated control of all the trains running on the metro

line. Additionally, it should be noted that Proposition 3.1 presents the stochastic stability condition for the error state-space

model (13) , where the number of stations is related to the dimension of this stochastic discrete system, and the departure

frequency of the trains on the metro line is related to the time horizon. Consider the fact that the stochastic stability

analysis for the stochastic discrete system is based on the long-time horizon. The high frequency of metro lines can ensure

a sufficient time horizon for the stochastic stability analysis of this stochastic discrete system. Thus, it is rational for the

proposed stochastic stability analysis result of a metro line with high frequency. 

3.2. Robust train regulation results 

Based on Definition 2.2 and Proposition 3.1 , we will design the robust train regulation for metro lines with the stochastic

passenger arrival rate and uncertain disturbances. The following theorem will give a sufficient condition for the existence of

the robust train regulation strategy. 

Theorem 3.1. Let γ > 0 be a given constant. For the error state-space model (13) of the metro line with N + 1 stations, if there

exist a positive scalar α, positive definite matrixes X ( i ), Z ( i ), and any matrices Y (i ) , i = 1 , 2 , . . . , s with appropriate dimensions

such that the following linear matrix inequalities hold ⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−X (i ) 0 �1 (i ) X (i ) 

0 −αγ 2 I α�3 (i ) 0 

�T 
1 (i ) α�T 

3 (i ) −�2 (i ) 0 

X (i ) 0 0 −αI 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

< 0 , (30) 

[ 

1 x T 
k 0 

x k 0 X (θ (k 0 )) 

] 

≥ 0 , (31) 
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[ 

Z(i ) Y (i ) 

Y T (i ) X (i ) 

] 

≥ 0 , (32)

Z ll (i ) ≤ ū 

2 
l , (33)

where �1 ( i ), �2 ( i ) take the same forms of (21) , �3 (i ) = [ B T (i ) , B T (i ) , . . . , B T (i )] , and ū l = 

ˆ u l + ̌u l 
2 − | ˆ u l −ǔ l 

2 | , then the robust

state feedback control u k = Y (i ) X −1 (i ) x k , k ≥ k 0 is obtained as the robust train regulation to guarantee that the practical train

timetable tracks the nominal timetable with a disturbance attenuation level γ so as to reduce the total train delays. 

Proof. First, according to Schur complement [4] , it can be derived that the inequality (30) implies that the condition

(18) holds. So according to Proposition 3.1 , under the conditions (30) –(33) , the error state-space model (13) with w k = 0

and control constraints (17) is stochastically stable. 

Next for any nonzero disturbance w k with finite energy, calculating �V ( k ) yields that 

�V (k ) = E { V (x k +1 , θ (k + 1)) } − V (x k , θ (k )) 

= (A (i ) x k + B (i ) K(i ) x k + B (i ) w k ) 
T 

s ∑ 

j=1 

πi j P ( j)(A (i ) x k + B (i ) K(i ) x k + B (i ) w k ) − x T k P (i ) x k 

= 

[
x k 

w k 

]T 

⎡ 

⎢ ⎣ 

−P (i ) + 1 (i ) 2 (i ) 

T 
2 (i ) B 

T (i ) 
s ∑ 

j=1 

πi j P ( j) B (i ) 

⎤ 

⎥ ⎦ 

[
x k 

w k 

]
, (34)

where 

1 (i ) = (A (i ) + B (i ) K(i )) T 
s ∑ 

j=1 

πi j P ( j)(A (i ) + B (i ) K(i )) , (35)

2 (i ) = (A (i ) + B (i ) K(i )) T 
s ∑ 

j=1 

πi j P ( j) B (i ) . (36)

Additionally, let X(i ) = αP −1 (i ) , Y (i ) = K(i ) X(i ) . Pre and post-multiplying both sides of (30) by

diag { α1 / 2 X −1 (i ) , α−1 / 2 I, α−1 / 2 I, . . . , α−1 / 2 I} , we can get condition (30) is equivalent to ⎡ 

⎣ 

−P (i ) + 1 (i ) + I 2 (i ) 

T 
2 (i ) −γ 2 I + B 

T (i ) 
s ∑ 

j=1 

πi j P ( j) B (i ) 

⎤ 

⎦ < 0 . (37)

It obviously follows from (34) and (37) that 

�V (k ) + E { x T k x k } − γ 2 w 

T 
k w k < 0 , (38)

which implies that 

∞ ∑ 

k = k 0 
(�V (k ) + E { x T k x k } − γ 2 w 

T 
k w k ) < 0 , (39)

Thus, noting that lim k → + ∞ 

E { x k } = 0 , under the zero initial condition (x k 0 = 0) , we have 

E 

{ 

∞ ∑ 

k = k 0 
x T k x k 

} 1 / 2 

≤ γ

( 

∞ ∑ 

k = k 0 
w 

T 
k w k 

) 1 / 2 

. (40)

Therefore, according to Definition 2.2 , the robust state feedback control u k = Y (i ) X −1 (i ) x k , k ≥ k 0 is obtained as the train

regulation to guarantee that the practical train timetable tracks the nominal timetable with a disturbance attenuation level

γ to reduce the total train delays. �

Remark 3.2. According to conditions (30) –(33) of Theorem 3.1 , the robust state feedback control for the train regulation for

metro lines can be obtained such that the practical train timetable is robust to uncertain disturbances with a disturbance

attenuation level γ . The proposed method in Theorem 3.2 provides a closed-loop decision-making approach for the train

regulation that is easily implementable to improve the robustness of the train regulation with respect to uncertain distur-

bance with finite energy. Additionally, as an extension, if the disturbance is considered as a random variable satisfying a

certain probabilistic distribution, the proposed discrete stochastic system model and robust control method by [17,18] can
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be well extended to address the train regulation problem for metro lines with stochastic disturbances, which will be a future

topic. 

Furthermore, from a practical point of view, we often hope that the system has a smaller H ∞ 

disturbance attenuation

γ to effectively reduce the total train delays. Then, under the control constraint (17) , the optimal H ∞ 

control of the robust

train regulation is introduced as follows. 

min 

(α,X(i ) ,Y (i ) ,Z(i )) 
γ 2 (41) 

subject to (i) (30) − (33) , 

( ii ) α > 0 , X (i ) > 0 , Z(i ) > 0 , i = 1 , 2 . . . , s. (42) 

Note that, if γ is regarded as a variable, the term αγ 2 in condition (30) is nonlinear, i.e., the obtained sufficient condition

for the existence of an optimal robust train regulation strategy is nonlinear and not the form of a linear matrix inequality.

Then, compared to common robust control problems, the difficulty we face is that the obtained sufficient condition cannot

be directly solved using the interior-point algorithm. To solve this nonlinear optimization problem, we design an effective

iteration algorithm along with the interior-point algorithm to generate the state-feedback control for the train regulation

strategy with a less conservative H ∞ 

disturbance attenuation, which further enriches the robust control theory and is pre-

sented as follows. 

Algorithm 3.1. 

• Step 1. Choose a sufficiently large initial γ > 0 such that there exists a feasible solution to linear matrix inequalities

(LMIs) (30) –(33) and (ii) in (42) . 
• Step 2. For a given γ > 0, solve the LMIs (30) –(33) and (ii) in (42) by an interior-point algorithm, which can be imple-

mented with the Matlab LMI Toolbox. 
• Step 3. If the LMIs (30) –(33) and (ii) in (42) are infeasible, then exit and output γ = γ + �γ and the corresponding

solutions. Otherwise, decrease the positive scalar γ with the step size �γ , i.e., γ = γ − �γ and go back to Step 2. 

Remark 3.3. In the proposed algorithm 3.1, if the positive variable γ is given, then all the constraint conditions in (30) –(33)

take the form of linear matrix inequalities, which can be directly solved by the Matlab LMI Toolbox, which implements an

interior-point algorithm. For the finite iteration times of the variable γ , the time complexity of algorithm 3.1 is mainly de-

pendent on the scale of the LMIs (30) –(33) . Noting that the scale of the LMIs (30) –(33) is related to the number of stations,

the time complexity of the proposed algorithm is dependent on the number of stations but not on the number of trains.

In particular, for a practical metro line with a dozen stations, the proposed method has a low computational complexity

because the LMI-based optimization problems can be solved in polynomial time. Therefore, the proposed algorithm can be

effectively and quickly implemented for a practical metro line in real time. Additionally, the proposed method can be ex-

tended to address both the case in which the time intervals between successive trains for the stages are different and the

case in which the passenger arrival rate at each station takes on different probability transition matrixes. 

4. Numerical examples 

In this section, to illustrate the validity of the theoretical results proposed in this paper, we will apply our proposed

methods to the actual Beijing Yizhuang metro line, which consists of 14 stations (i.e., N = 13 ). The geometric layout of the

actual Beijing Yizhuang metro line is plotted in Fig. 5 . For the accumulated passenger arrival flow to the train delays, it is

necessary to study the robust train regulation during peak hours. Based on this, we perform our method for the metro line

during the morning peak hours (from 7:00 a.m. to 8:30 a.m.). The considered nominal running time is between 60 s and

100 s , and the buffer time t b is set as 15s for each station. In addition, without loss of generality, we consider the case in

which the passenger arrival flow and Markovian switching rates for each station are the same, and the average boarding

time per passenger for each station is given as a k = 0 . 05 s . 

First, we collect the practical data of the passenger arrival flow of Xiaohongmen station on the Yizhuang metro line

during the morning peak hours from 7:30 a.m. to 8:30 a.m. for five working days, as presented in Table 1 . From Table 1 ,

we find that there are three approximate switching modes for the average passenger arrival rates during the morning peak

hours: 0.3, 0.4, and 0.5. Under the assumption of a Markovian process, we use mode 1, 2 and 3 to denote the three switching

values 0.3, 0.4, and 0.5, respectively. Moreover, according the practical data in Table 1 , the probability transition matrix for

the three switching modes is calculated as follows. 

� = 

[ 

0 . 60 0 . 25 0 . 15 

0 . 47 0 . 33 0 . 20 

0 . 40 0 . 40 0 . 20 

] 

. (43) 

To verify the rationality of this assumption, we adopt the χ2 hypothetical test method for the discrete time Markovian

process. First, the χ2 statistic is chosen as χ2 = 2 
∑ m 

i =1 

∑ m 

j=1 f i j ln 

p i j 

p j 
[19] , where m represents the total number of switching
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Fig. 5. Beijing Yizhuang metro line map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

modes, f ij is the total number of transitions from state i to state j , p ij is the transition probability from state i to state j ,

and p j = 

∑ m 
i =1 

f i j ∑ m 
i =1 

∑ m 
j=1 

f i j 
is the marginal probability. Then, according to the practical data in Table 1 , we calculate that χ2 =

13 . 831 . For the given significant level α = 0 . 05 , χ2 
α(4) = 9 . 488 . Because χ2 > χ2 

α(4) , we can find that the assumption that

the passenger arrival rate is dependent on a discrete time Markovian process is rational. Under the probability transition

matrix (43) , we can design the robust train regulation to suppress the effect of the stochastic passenger arrival flow and the

uncertain disturbances to the nominal timetable of the metro line. To show the robustness and the stochastic stability of

the proposed robust train regulation strategy, we will consider three scenario studies with larger train delays: Scenario 1 is

used to verify the validity of the proposed train regulation model while demonstrating the merit of the proposed method

in comparison to the common method using the buffer time, Scenario 2 is used to illustrate the robustness of the proposed

method for a metro line with frequent disturbances, and Scenario 3 is used to verify the stochastic stability of the metro

line under the proposed method with different stochastic switching modes. 

4.1. Scenario 1: one train is affected along all stations 

In this scenario, suppose that at time 7 : 00 a . m . , train 10 is departing from the first station. Because of the ef-

fect of uncertain disturbances, train 10 is assumed to be delayed by [70 s , 16 s , 18 s , 15 s , 15 s , 16 s , 17 s , 15 s , 15 s ,

15 s , 16 s , 17 s , 15 s] from station 1 to station 13. Clearly, train 10 is affected by a relatively larger delay in the first sta-

tion. For the larger delay 70 s at the first station, the affected train 10 will need several stations to compensate for the

delays. Then, we will apply the proposed robust train regulation method to recover the delays of the affected train 10. 

According to the probability transition matrix (43) , using Monte Carlo simulations, one of the realizations of discrete

time Markovian jumping modes for the passenger arrival rates from 7 : 00 a . m . to 8 : 30 a . m . is shown as Fig. 6 . First, under

the larger delay, for the error state-space model of train traffic without control, i.e., u k = 0 , the error state evolution trend

for the affected train 10 is plotted as the square line in Fig. 7 , which shows that the stochastic passenger arrival flow and

the uncertain disturbances lead to the delays of the departure time of train 10 at all stations. The delays of the affected

train 10 follow an increasing trend along the stations Moreover, let t 10 
i 

be the departure time of train 10 at station i . The

corresponding values of the delays along all the stations are calculated in the first line of Table 2 , which shows that within

the framework of the common train regulation model using buffer time, the delays of the affected train 10 increase from



300 S. Li et al. / Information Sciences 373 (2016) 287–307 

Table 1 

The passenger arrival flow of Xiaohongmen station in Yizhuang metro line. 

Arrival time Departure time Passenger number Arrival rate Mode 

7 :33:35 7 :34:05 155 0 .3 1 

7 :40:00 7 :40:20 178 0 .5 3 

7 :46:45 7 :47:15 142 0 .3 1 

7 :52:50 7 :53:40 141 0 .4 2 

Day 1 7 :59:50 8 :00:30 178 0 .4 2 

8 :06:00 8 :06:15 121 0 .3 1 

8 :12:50 8 :13:20 120 0 .3 1 

8 :19:00 8 :19:20 134 0 .4 2 

8 :25:30 8 :26:00 114 0 .3 1 

8 :32:05 8 :32:30 109 0 .3 1 

7 :33:55 7 :34:10 108 0 .3 1 

7 :39:55 7 :40:20 124 0 .3 1 

7 :46:45 7 :47:35 165 0 .4 2 

7 :52:45 7 :53:40 179 0 .5 3 

Day 2 7 :59:35 8 :00:20 180 0 .5 3 

8 :06:15 8 :06:55 153 0 .4 2 

8 :12:45 8 :13:10 136 0 .4 2 

8 :19:00 8 :19:35 141 0 .4 2 

8 :26:10 8 :26:40 117 0 .3 1 

8 :32:15 8 :32:35 109 0 .3 1 

7 :33:40 7 :34:40 154 0 .5 3 

7 :40:10 7 :40:30 140 0 .4 2 

7 :46:40 7 :47:05 146 0 .4 2 

7 :53:10 7 :53:30 176 0 .5 3 

Day 3 7 :59:10 7 :59:30 162 0 .5 3 

8 :05:55 8 :06:25 138 0 .3 1 

8 :12:35 8 :13:05 183 0 .5 3 

8 :19:00 8 :19:20 120 0 .3 1 

8 :25:20 8 :25:40 109 0 .3 1 

8 :32:00 8 :32:20 104 0 .3 1 

7 :33:30 7 :33:50 155 0 .5 3 

7 :40:00 7 :40:40 134 0 .3 1 

7 :46:35 7 :46:50 161 0 .4 2 

7 :53:20 7 :53:45 169 0 .4 2 

Day 4 7 :59:20 7 :59:45 165 0 .5 3 

8 :06:05 8 :06:25 175 0 .4 2 

8 :12:35 8 :13:00 129 0 .3 1 

8 :18:45 8 :19:10 118 0 .3 1 

8 :25:40 8 :26:00 109 0 .3 1 

8 :31:40 8 :32:05 96 0 .3 1 

7 :33:35 7 :33:55 132 0 .4 2 

7 :40:25 7 :40:45 127 0 .3 1 

7 :46:40 7 :47:05 136 0 .4 2 

7 :53:00 7 :53:15 129 0 .3 1 

Day 5 8 :00:10 8 :00:25 210 0 .5 3 

8 :06:00 8 :06:25 129 0 .4 2 

8 :12:50 8 :13:10 138 0 .3 1 

8 :19:00 8 :19:20 102 0 .3 1 

8 :25:45 8 :26:05 114 0 .3 1 

8 :32:25 8 :32:45 112 0 .3 1 

 

 

 

 

 

 

 

 

 

 

 

 

70 s at the first station to 87 s at the last station. The delays of the affected train 10 are propagated from one station to

the next station, i.e., the deviation with respect to the nominal timetable is amplified over time. This unstable behaviour is

quite uncomfortable for passengers. 

Next, according to the proposed robust train regulation model and method in this paper, we design the robust train

regulation to suppress the effect of the stochastic passenger arrival flow and the uncertain disturbances to the nominal

timetable of the metro line. Suppose that the state feedback control u k is subject to the constraint −30s ≤ u k ≤ 35s , i.e.,

the maximum increase in the running time and dwell time for each train is not allowed to exceed 35 s, and the maximum

decrease in the running time and dwell time is not allowed to exceed 30 s . Then, performing Algorithm 3.1 with Matlab

LMIs Toolbox, the positive scalar γ decreases with the step size � γ = 0 . 1 at each time, the final smaller H ∞ 

disturbance

attenuation is obtained as γ = 16 . 4 , and the corresponding controller gain can be obtained. To keep the paper concise, the

controller gain K ∈ R 13 × 13 is not presented here because the dimension is very high. In particular, the robust controller

u 10 
i 

is calculated in the last line of Table 2 , which shows that the adjustment satisfies the control constraints. In addition,

because of the larger delay at the first station, the adjustment is larger at the beginning of the stations and then deceases in
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Fig. 6. The realization of discrete time Markovian jumping mode. 

Fig. 7. The delays of the affected train 10. 

Table 2 

The delays and controller of the affected train 10 at all stations. 

Station i 1 2 3 4 5 6 7 8 9 10 11 12 13 

t 10 
i 

70 s 71 s 73 s 75 s 76 s 78 s 79 s 80 s 82 s 83 s 84 s 86 s 87 s 

t̄ 10 
i 

70 s 69 s 60 s 51 s 42 s 35 s 29 s 24 s 20 s 17 s 14 s 12 s 11 s 

u 10 
i 

−17 s −26 s −26 s −25 s −22 s −22 s −21 s −20 s −19 s −18 s −17 s −16 s null 

 

 

 

 

 

 

 

 

 

 

the following stations. Under the robust train regulation, the error state evolution for the affected train 10 is plotted as the

round line in Fig. 7 . In contrast to the common train regulation model using buffer time, for which the buffer time allocation

is static, the proposed train regulation model dynamically adjusts both the running time and the dwell time of each train

in real time using the state-feedback information, thereby reducing the potential redundant buffer time and improving the

system capacity utilization. By comparing the square and round lines in Fig. 7 , we can observe that under the proposed

train regulation model, the delays of train 10 follow a decreasing trend, and the error state of the departure time of train 10

from the nominal timetable is effectively reduced, indicating the validity of the proposed train regulation model. Let t̄ 10 
i 

be

the departure time of train 10 at station i under the robust train regulation. The corresponding values of the delays along

all the stations are calculated in the second line of Table 2 . From Table 2 , we can observe that the delays of train 10 are

effectively reduced at all stations and decreased from 70 s at the first station to 11 s at the last station. The proposed robust

train regulation method prevents the accumulation of delays for the affected trains along the stations. 
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Fig. 8. The error state evolution for the metro system without robust train regulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Scenario 2: multiple trains are affected along all stations 

In this case, we consider that there are multiple trains affected by the uncertain disturbances along all stations to demon-

strate the robustness of the proposed method for metro lines with frequent disturbances. We also take the Beijing Yizhuang

metro line as an example. Assume that the stochastic switching of the passenger arriving rates is also the realization of the

discrete-time Markovian jumping mode in Fig. 6 . In addition, we choose the uncertain disturbances to the running time and

dwell time of trains as a Gaussian white noise with a mean of 20s and standard of 10s, which are larger than the white

noise adopted by Van Breusegem et al. [27] . 

The time horizon is also considered from 7 : 00 a . m . to 8 : 30 a . m . during the morning peak hours. Suppose that the

initial stage for the error state-space model at 7 : 00 a . m . is k 0 = 16 and that the initial conditions of the error state of

the metro line are chosen randomly from the interval [1,10]. Under the stochastic passenger arrival flow and the uncertain

disturbances, the error state evolution of the departure time of trains in the metro line at stations 5, 8, 10 and 13 without

robust train regulation is plotted in Fig. 8 , which shows that the delays of each train are amplified with increasing number

of stations because of the accumulated effect of the stochastic passenger arrival flow and uncertain disturbances. The delays

are continuously increasing progressively along the stations, which reduces the efficiency of the metro line operation. In

particular, for the last station, the maximum delay is up to 72 s . Thus, for larger scale metro lines, the delays of each train

will be amplified more seriously along the stations. Therefore, it is necessary to apply the robust train regulation to suppress

the delay propagation along large-scale metro lines. 

In practice, suppose that the state feedback control u k is subject to the constraint −30 s ≤ u k ≤ 35 s . By applying the

robust train regulation to each train and solving the optimization problem (41) , a smaller H ∞ 

disturbance attenuation γ is

also calculated as γ = 16 . 4 , and the corresponding controller gain can be obtained. Under the robust train regulation, the

simulation results of the error state evolution for stations 5, 8, 10 and 13 are plotted in Fig. 9 , which shows that the devia-

tions from the nominal timetable for each train are effectively controlled in the range of 22 s . By comparing Fig. 8 and Fig. 9 ,

it is obvious that the proposed robust train regulation significantly reduces the delays of all the trains at each station. For

the train operation at the last station, when the train operation is without train regulation, the train delay increases from 5 s

to 72 s . This delay negatively influences the passengers traveling and reduces the train operation efficiency. By comparison,

under the robust train regulation strategy, the delays of the trains at the last station are controlled in a reasonable range of

22 s , which is a accepted level. 

Moreover, let w, x , and y represent the overall disturbances, the overall delays without robust train regulation, and the

overall delays with robust train regulation of all the trains at each station, respectively. Then the corresponding overall

disturbances and delays for all the trains at the 13 stations are calculated as summarized in Table 3 . From the third column

in Table 3 , we can observe that the delays of all the trains increase from one station to the next because of the uncertain

disturbances, which shows that the delays are amplified along the stations. Under the robust train regulation, the proportion

of the controlled delays to the input disturbances is effectively controlled in the range [0.7, 3.0] (see the fifth column of

Table 3 ), which is substantially less than the H ∞ 

disturbance attenuation level γ = 16 . 4 . Therefore, the bullwhip effect of

the uncertain disturbances to the train delays is extremely reduced, and the robustness of the train traffic operation is

effectively im proved. As a result, the overall delays of the trains at each station are reduced to 25%–73% compared to the

case without train regulation, which are presented as the last column of Table 3 . The evolution trend of the overall delays of

the trains along the stations is plotted in Fig. 10 , which clearly shows that the robust train regulation strategy significantly
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Fig. 9. The error state evolution for the metro system under robust train regulation. 

Table 3 

The overall disturbances and delays of all the trains at 

each station. 

w x y y/w (x − y ) /x 

Station 1 71 72 51 0 .71 29 .14% 

Station 2 100 169 126 1 .26 25 .37% 

Station 3 75 238 142 1 .88 40 .39% 

Station 4 83 306 157 1 .90 48 .46% 

Station 5 95 366 168 1 .77 54 .00% 

Station 6 82 407 159 1 .93 60 .97% 

Station 7 105 495 187 1 .78 62 .29% 

Station 8 108 562 204 1 .89 63 .74% 

Station 9 87 614 188 2 .17 69 .41% 

Station 10 86 667 182 2 .11 72 .66% 

Station 11 84 692 188 2 .23 72 .89% 

Station 12 87 716 199 2 .29 72 .20% 

Station 13 89 743 238 3 .00 68 .03% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reduces the overall delays of the trains at each station and thus improves the operation efficiency of the metro line system,

especially for large-scale metro lines with a number of stations. 

In addition, to demonstrate the reduced conservativeness of the stability condition of the Markovian model for describing

the dynamic changing characteristic of the passengers arrival flow, we further conduct simulations for the case with the

Markovian model and the case with the arbitrary switching model under the same initial conditions and disturbances. First,

using the result in Proposition 3.1 , we can obtain the stability condition of the metro line under the Markovian model,

and the corresponding error state evolution trend for any station (here we choose station 13) is plotted as the solid line in

Fig. 11 . In addition, for the case with an arbitrary switching model of the passenger arrival flow, according to the stability

results for the arbitrary switching model proposed by [8] , the stability condition for the metro line under the arbitrary

switching model can be derived. Under the stability condition, the corresponding error state evolution trend for station 13

under the arbitrary switching model is plotted as the dotted line in Fig. 11 . By comparing the solid line and the dotted

line in Fig. 11 , we can find that the fluctuation of the error state for station 13 for the case with the Markovian model is

obviously smaller than that for the case with the arbitrary switching model. This shows that the stability condition obtained

from the Markovian model is less conservative than that obtained from the arbitrary switching model because the number

of constraint conditions of linear matrix inequalities is increased under the arbitrary switching model. 

4.3. Scenario 3: the stations are with different stochastic switching modes of passenger arrival rates 

In Scenarios 1 and 2, only one of the realizations of discrete-time Markovian jumping modes is considered. In this part,

we will design the robust train regulation under different stochastic switching modes of passenger arrival rates to show

the stochastic stability of the metro line under the robust control. We also assume that train 10 is departing from the first

station at 7:00 a.m. 

For the stochastic passenger arrival flow, according to the probability transition matrix (43) , a set of 15 different cases of

the Markovian jumping modes are generated through Monte Carlo simulations, which are shown in Table 4 . Then under the
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Fig. 10. The evolution trend of the overall delays of the trains at each station. 
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Fig. 11. The error state evolution trend for station 13 under stability conditions. 

Table 4 

The Markovian jumping modes with 15 cases. 

Case 1 1 → 2 → 2 → 1 → 2 → 1 → 1 → 1 → 2 → 2 → 3 → 2 → 2 → 1 → 1 → 2 → 1 

Case 2 1 → 1 → 1 → 3 → 2 → 1 → 1 → 2 → 3 → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 

Case 3 1 → 2 → 3 → 1 → 3 → 1 → 2 → 3 → 2 → 2 → 3 → 1 → 1 → 2 → 2 → 1 → 1 

Case 4 1 → 2 → 1 → 2 → 2 → 2 → 1 → 2 → 2 → 2 → 1 → 2 → 1 → 1 → 3 → 2 → 2 

Case 5 2 → 1 → 1 → 1 → 2 → 1 → 3 → 1 → 1 → 3 → 2 → 2 → 1 → 1 → 1 → 2 → 2 

Case 6 1 → 1 → 1 → 1 → 1 → 2 → 1 → 2 → 2 → 2 → 2 → 2 → 3 → 1 → 2 → 1 → 1 

Case 7 2 → 1 → 2 → 1 → 1 → 1 → 1 → 1 → 3 → 1 → 1 → 1 → 1 → 2 → 1 → 2 → 1 

Case 8 1 → 1 → 1 → 2 → 3 → 1 → 1 → 1 → 2 → 3 → 2 → 3 → 3 → 1 → 3 → 3 → 2 

Case 9 2 → 1 → 2 → 3 → 1 → 1 → 2 → 1 → 1 → 1 → 1 → 1 → 1 → 2 → 2 → 1 → 1 

Case 10 2 → 1 → 2 → 1 → 2 → 3 → 3 → 1 → 1 → 2 → 2 → 1 → 1 → 1 → 1 → 1 → 1 

Case 11 2 → 3 → 1 → 2 → 1 → 2 → 2 → 1 → 1 → 1 → 3 → 1 → 1 → 1 → 1 → 1 → 1 

Case 12 1 → 2 → 1 → 1 → 2 → 1 → 3 → 1 → 1 → 1 → 1 → 2 → 3 → 2 → 3 → 2 → 2 

Case 13 2 → 1 → 3 → 2 → 1 → 2 → 3 → 1 → 2 → 2 → 2 → 2 → 1 → 3 → 1 → 2 → 3 

Case 14 1 → 1 → 1 → 1 → 2 → 1 → 1 → 1 → 2 → 1 → 2 → 3 → 2 → 1 → 1 → 1 → 1 

Case 15 1 → 1 → 1 → 1 → 2 → 1 → 2 → 1 → 1 → 2 → 2 → 1 → 3 → 1 → 1 → 1 → 1 

 

 

 

robust train regulation strategy, by applying Algorithm 3.1 to these different cases, Fig. 12 depicts the error state evolutions

of train 10 at stations 5, 8, 10 and 13 with 15 different cases, respectively. The figure shows that the error state evolutions

for 15 different cases are all in close proximity to each other for the four considered stations for train 10, and thus, the

robust train regulation ensures the stochastic stability of a metro line system with stochastic passenger arrival flow. 
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Fig. 12. The delays of the affected train 10 in 15 different cases for stations 5, 8, 10 and 13. 

Table 5 

The overall train disturbances and delays in 15 different 

cases. 

w̄ x̄ ȳ ȳ / ̄w ( ̄x − ȳ ) / ̄x 

Case 1 1143 6044 2182 1 .91 63 .89% 

Case 2 1143 6043 2192 1 .91 63 .73% 

Case 3 1143 6048 2194 1 .92 63 .71% 

Case 4 1143 6045 2180 1 .91 63 .95% 

Case 5 1143 6046 2191 1 .92 63 .76% 

Case 6 1143 6042 2182 1 .91 63 .89% 

Case 7 1143 6044 2187 1 .91 63 .81% 

Case 8 1143 6044 2203 1 .93 63 .55% 

Case 9 1143 6047 2186 1 .91 63 .85% 

Case 10 1143 6048 2190 1 .92 63 .79% 

Case 11 1143 6048 2190 1 .92 63 .79% 

Case 12 1143 6045 2192 1 .92 63 .74% 

Case 13 1143 6050 2190 1 .92 63 .80% 

Case 14 1143 6041 2188 1 .91 63 .81% 

Case 15 1143 6042 2188 1 .91 63 .79% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, let w̄ , x̄ , and ȳ represent the overall disturbances, the overall delays without robust train regulation, and the

overall delays with robust train regulation at all stations, respectively. By performing Algorithm 3.1 for 15 different cases,

the corresponding overall disturbances and delays at all stations for the different cases are calculated and summarized in

Table 5 . From Table 5 , we can observe that under the same disturbances, the proportion of the controlled delays to the

input disturbances is effectively controlled to the range of 1.91 to 1.93 for all cases (see the fifth column of Table 5 ). In

addition, the overall delays of all stations for all cases are reduced to the interval [63.71%, 63.95%] compared to the case

without regulation. The corresponding overall delays of the trains in different cases are plotted in Fig. 13 , which reveals

that the robust train regulation strategy significantly reduces the overall delays for the different cases. In addition, the

reduced overall delays of all stations for the different cases with different Markovian jumping modes are approximately

the same, which indicates the stability and reliability of the proposed train regulation methods for the different Markovian

jumping modes. In summary, the proposed robust train regulation strategy ensures the robustness and stability of metro line

systems for recovering larger train delays. It should be noted that once the real-world time-dependent demand patterns and

actual schedules/timetables for the metro line are obtained, the proposed methods can be easily applied to practical train

regulations. 

5. Conclusion 

In this paper, the robust train regulation problem for metro lines with stochastic passenger arrival flow and uncertain

disturbances is investigated. The passenger arrival flow is assumed to be dependent on a discrete Markovian process, and

the dwell time of the train is characterized by dynamically stochastic switching at the different stages of the stations with

a discrete Markovian jumping parameters. Then, a constrained state-space model for the train traffic of a metro line oper-

ation is developed based on the discrete Markovian system. Using stochastic stability theory, a sufficient condition for the
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Fig. 13. The overall delays of the trains in 15 different cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

existence of state-feedback control as the train regulation strategy is given in terms of linear matrix inequalities to ensure

the stochastic stability of the train traffic. Moreover, the robust train regulation is designed to guarantee that the practical

train timetable tracks the nominal timetable with a disturbance attenuation level. To obtain a smaller disturbance attenua-

tion level, an effective iteration algorithm is proposed to solve a nonlinear optimization problem to determine the optimal

state feedback control as the train regulation strategy. Numerical examples show that, under the proposed robust train regu-

lation, the train delays are significantly reduced, and the operation efficiency of the metro line system is improved, especially

for large-scale metro lines with a number of stations. Moreover, a number of Markovian jumping modes are generated via

Monte Carlo simulations to demonstrate the stochastic stability of the metro line under the robust control. The main goal

of the proposed regulation is a full timetable recovery. Thus, the proposed method is applicable to train delays and dis-

turbances in a certain range. With great delays and disturbances, a new reference timetable should be designed, which is

related to the rescheduling problem and the robust train rescheduling strategy needs to be investigated in the future. Addi-

tionally, the frequency and regularity of the train regulation problem for a metro line system will be another future research

topic. 
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