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a b s t r a c t 

To improve the headway regularity and commercial speed of high-frequency metro lines 

with overloaded passenger flow, this paper systematically investigates a joint optimal dy- 

namic train regulation and passenger flow control design for metro lines. A coupled state- 

space model for the evolution of the departure time and the passenger load of each train 

at each station is explicitly developed. The dwell time of the train is affected by the num- 

ber of entering and exiting passengers. Combining dynamic train regulation and passenger 

flow control, a dynamic optimisation problem that minimises the timetable and the head- 

way deviations for metro lines is developed. By applying a model predictive control (MPC) 

method, we formulate the problem of finding the optimal joint train regulation and pas- 

senger flow control strategy as the problem of solving a set of quadratic programming (QP) 

problems, under which an optimal control law can be numerically calculated efficiently us- 

ing a quadratic programming algorithm. Moreover, based on the Lyapunov stability theory, 

the stability (convergence) of the metro line system under the proposed optimal control 

algorithm is verified. Numerical examples are given to illustrate the effectiveness of the 

proposed method. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

1.1. Motivation 

Urban metro transportation systems have became a rapid, clean, efficient way to transport passengers in many modern

large cities for relieving the traffic pressure. Different to traditional passenger railway traffic, metro line systems have inher-

ent features of high frequency and traffic density, which can lead to instability of this transportation system. Any deviation

with respect to the nominal schedule of a given train is amplified with time due to the accumulation of passengers, which is

similar to the familiar bus bunching problem in which the accumulation of passengers also leads to the instability of the bus

system ( Daganzo, 2009; Daganzo and Pilachowski, 2011; Sánchez-Martínez et al., 2016 ). If an inevitable disturbance happens

on the metro line system, such as equipment failure or inadequate driver/passenger actions, the train will be delayed and

train delays will increase from one station to the next with the accumulation of passengers, so that the whole metro line

system operation will be affected. In order to restore the disturbed traffic to an acceptable situation for metro lines, train
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regulation manipulating the running time and the dwell time of each train is therefore necessary to recover train delays and

to prevent the instability of the metro line operation. 

With increasing urbanization, the increasing population and economic activities create a significant rise for the demand

of metro transportation systems. Typically, the passenger arrival flow is extremely large during the peak hours of the work-

day. For example, a survey of the Beijing metro line system shows that the overloaded passenger count of the trains usually

exceeds 120% during peak hours, causing a number of stations to adopt measures to control the passenger arrival flow. The

dwell time of the train at the station depends on the number of passengers arriving to the station. The high passenger

arrival flow during the peak hours magnifies the dwell time of the train and leads to train delays, especially under the case

of a disturbance event occurring. The overloaded passenger flow aggravates the instability of metro lines and further affects

the operational efficiency of the metro lines. Therefore, for the peak hours of the workday, it is essential to investigate how

to control the large passenger arrival rate, apart from conducting train regulation to recover train delays from disturbed

situations. 

Since metro-type rail lines operate according to a given timetable, the main goal of regulation is a full timetable recovery

to improve the commercial speed (the total travelling speed), while maintaining the regularity of the headway to minimize

the accumulation of passengers and reduce undue passenger waiting time ( Fernandez et al., 2006 ). The regulation of metro

lines seeks a compromise between timetable and headway deviations during the transient period. Based on this, the research

scope of this paper is a full timetable recovery from train delays under disturbances in a certain range, and the aim is to

determine the joint dynamic train regulation and passenger flow control strategy by taking into consideration the overloaded

passenger flow, providing the system with flexibility for recovery from disturbed situations, so as to ensure the stability and

improve the headway regularity and commercial speed of the metro line system. 

1.2. Literature review 

As an important transportation mode in a modern metropolis, the metro line system has attracted substantial attention

by researchers over the last decades. The literature on the metro line system includes two main categories: train timetabling

(train schedules) and train rescheduling problems. The train timetabling problem aims to determine a pre-operation sched-

ule for a set of trains for the metro line system, while the target of the train rescheduling process is to cope with the

unpredicted events and the train rescheduling model needs to adjust the current timetable in an effective way when a

disturbance occurs. 

To study the train timetabling problem of a metro line system, the early work of Cury et al. (1980) proposed an analytical

model with two dynamic equations: the headway and the passenger equations, and established a cost function that includes

passenger delay, passenger comfort, and efficient train operation. The generation of optimal schedules for metro lines was

formulated as a nonlinear dynamic programming problem, and solved by an iterative hierarchical multilevel decomposition

method. Minciardi et al. (1995) dealt with the problem of generating daily train schedules for an underground railway line,

which optimized the quality of the service expressed as the mean time spent by the passengers in the system with the

safety constraints on the motion of trains. To improve the computational efficiency, Assis and Milani (2004) proposed a new

methodology for computing the optimal train schedules for metro lines using a linear-programming-based model predictive

control formulation. The proposed methodology is computationally efficient and can generate optimal schedules for a whole

day operation as well as schedules for transitions between two separate time periods with known schedules. Mannino and

Mascis (2009) discussed a number of theoretical and practical results related to the implementation of an exact algorithm

to route and schedule trains in real time for metro stations. Niu and Zhou (2013) focused on optimizing a passenger train

timetable in a heavily congested urban rail corridor, and developed a nonlinear optimization model to solve the problem on

practical sized corridors subject to the available train-unit fleet. Sun et al. (2014) formulated three optimization models to

design demand-sensitive timetables for metro services by representing train operations using equivalent time. Li and Hong

(2014) formulated an integrated energy-efficient operation model to optimize the timetable and speed profile for metro

line operations. Niu et al. (2015) developed train schedules to minimize the total passenger waiting time using a nonlinear

integer programming model with linear constraints. Yang et al. (2016) developed a two-stage stochastic integer program-

ming model to minimize the expected travel time and penalty value incurred by transfer activities for metro networks. Das

Gupta et al. (2016) proposed a two-step linear optimization model to calculate energy-efficient timetables for metro railway

networks. Yin et al. (2017) designed a dynamic passenger demand oriented metro train scheduling to minimize the energy

consumption and waiting time by using a mixed-integer linear programming approach. 

In case a disturbance or a disruption occurs in the metro line, the optimized train timetables are not able to keep the

original optimized objectives. The train rescheduling process has to be initiated to recover train delays and reduce the effect

of the unpredicted events ( Chang and Chung, 2005; Corman et al., 2012; Dundar and Sahin, 2013; Cacchiani et al., 2014;

Veelenturf et al., 2016 ). Usually, for the general railway system with the larger travel time, the train operation strategies,

such as overtaking, meeting and crossing are allowable to implement for improving rescheduling efficiency. However, these

strategies are commonly prohibited in an urban metro system with the smaller travel time, where the trains have the same

priority, and the overtaking between train is not allowed for metro lines ( Van Breusegem et al., 1991; Niu et al., 2015;

Yin et al., 2016 ). In addition, the metro train rescheduling should particularly consider the passengers’ influencing factors

( Van Breusegem et al., 1991; Yin et al., 2016 ). The methods for the general railway rescheduling are usually infeasible for

metro train rescheduling problems. 
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In particular, there are two rescheduling approaches for an urban metro system, where one is to recover the original

timetable, and another is to redesign a new train scheduling plan. Every day small or slight delays occur in almost all the

urban metro lines, and the affected trains need several stations to compensate for the delays, then a transient period is

needed to reach the nominal timetable. In this case, the train regulation strategy by dynamically adjusting the running

time and the dwell time of each train is applied to recover the original timetable from disturbances ( Fernandez et al.,

2006; Lin and Sheu, 2010 ). The corresponding train rescheduling is also called Automatic Train Regulation (ATR), which

is a core function of modern metro signalling systems and plays an important role in maintaining schedule and headway

adherence. The train regulation strategy is an on-line and dynamic rescheduling approach, which is based on real-time

feedback information and generates the train rescheduling strategy in real-time. On the other hand, in the presence of large

delays, if the duration of the regulation transient and the magnitude of time deviations from the nominal timetable are

unacceptable, then a rescheduling process is needed, and a new delayed nominal timetable could be established, which is

an off-line rescheduling approach with the real-time requirement for the algorithm design ( Corman et al., 2012; Dundar and

Sahin, 2013; Yin et al., 2016 ). For the above two rescheduling approaches, this paper focuses on the first case to recover the

original timetable from disturbances. 

Usually, the buffer times or supplements in the timetable are designed to absorb the train delays resulting from distur-

bances ( Vansteenwegen and Oudheusden, 2004; Abril et al., 2008 ). However, buffer time allocations are static and cannot

be used dynamically and flexibly from a system-wide point of view, which may reduce the system utilization. Moreover, on-

line train regulation can be applied to recover the schedule/headway deviations resulting from disturbances by dynamically

adjusting the running time and the dwell time of each train. Many online train regulation techniques have been proposed

for metro lines. Van Breusegem et al. (1991) proposed a complete discrete-event traffic model of metro lines and designed a

state feedback control algorithm to ensure system stability and the minimization of a given performance index based on a

linear quadratic regulator approach. This model is useful to analyze the stability of a metro-type traffic regulation. By using a

fuzzy expert system approach, Chang and Thia (1996) designed an online timetable rescheduling of mass rapid transit trains

to maintain the quality of train service after sudden load disturbances. The proposed methodology is fast enough for online

implementation. Goodman and Murata (2001) proposed a classical optimization approach to regulating metro traffic to en-

capsulate the travelling passengers perception of the quality of the service provided. In Chang and Chung (2005) , a genetic

algorithm was applied to solve the optimal train regulation problem efficiently. Fernandez et al. (2006) proposed a predic-

tive traffic regulation model for metro loop lines on the basis of the optimization of a cost function along a time horizon

and proposed regulation strategies to minimize the timetable and headway deviations by modifying the train run times. Lin

and Sheu (2010) proposed an automatic train regulation method using a dual heuristic dynamic program to handle the non-

linear and stochastic characteristics of metro lines, and obtained a near-optimal regulation rapidly. Recently, regarding envi-

ronment sustainability and energy saving, Sheu and Lin (2012) proposed a dual heuristic programming method for designing

automatic train regulation of a metro line with energy saving by coasting and station dwell time control, and the evaluation

shows that better traffic regulation with higher energy efficiency is attainable. Kang et al. (2015) proposed a rescheduling

model for the last train by considering the train delays caused by incidents that occurred in urban railway transit networks,

and designed a genetic algorithm to minimize the difference between the original timetable and the rescheduled one. Xu

et al. (2016) considered an incident on a track of a double-track subway line, and formulated an optimization model to find

near-optimal rescheduled timetables with the least total delay time compared to the original one. 

Train regulation problems for metro lines are usually formulated as an optimization problem and solved using nonlinear

programming or dynamic programming by combining heuristic algorithms. However, for large-scale nonlinear optimization

problems, the computation time is still long, making the problem intractable in real time. In this paper, we use a model

predictive control (MPC) algorithm to efficiently handle large-scale optimization problems with hard physical constraints,

which have been successfully applied in many large-scale transportation systems ( Caimi et al., 2007; Le et al., 2013 ). For

instance, Lin et al. (2011) applied model predictive control to control and coordinate urban traffic networks, for which the

computation time is significantly reduced. Based on a model predictive control approach, Haddad et al. (2013) tackled the

macroscopic traffic modeling and control of a large-scale mixed transportation network consisting of a freeway and an urban

network, in order to minimize total delay for the entire network. By considering the uncertain passenger arrival flow, Li et al.

(2016) applied model predictive control for train regulation in underground railways to ensure the minimization of an upper

bound on the metro system cost function, showing that the proposed train regulation has a low online computation burden.

This feature makes the MPC algorithm an ideal candidate for real-time metro traffic regulation. 

1.3. Proposed approach and contributions 

Note that there are many works on the study of train regulation methods for metro lines, which are mainly conducted

by manipulating the running times and the dwell times of the trains. However, for peak hours with overloaded passen-

gers, train regulation by just manipulating the running time and the dwell time of each train can not easily handle the

overcrowded passenger flow. To the best of our knowledge, under the case that a disturbance or disruption occurs, few

works pay attention to designing the train regulation by also considering the passenger flow control. Moreover, considering

that existing nonlinear programming and dynamic programming methods become computationally prohibitive to deal with

large optimization problems in real time, other approaches are needed to solve this problem. Based on the above consider-
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Table 1 

The comparison of different characteristics of related models and methods. 

Characteristics Research problem Traffic model Solution methodology Stability property 

Assis and Milani (2004) Train schedule Train and passenger Linear-programming-based Did not verify system stability 

load dynamics Model predictive control 

Niu et al. (2015) Train schedule Train dynamics with Nonlinear mixed integer Did not verify system stability 

passenger demand programming 

Van Breusegem et al. (1991) Train regulation Only train dynamics Linear quadratic regulator Verified system stability 

Fernandez et al. (2006) Train regulation Only train dynamics Quadratic programming Did not verify system stability 

Lin and Sheu (2010) Train regulation Only train dynamics Dynamic programming Did not verify system stability 

Kang et al. (2015) Train regulation Only train dynamics Genetic algorithm Did not verify system stability 

Yin et al. (2016) Train regulation Train dynamics with Approximate dynamic Did not verify system stability 

passenger demands programming 

This paper Train regulation and Train and passenger Quadratic-programming-based Verified system stability 

passenger flow control load dynamics Model predictive control 

Fig. 1. The illustration of the metro-type railway line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ations, this study focuses on the joint dynamic train regulation and passenger flow control design problem for metro lines

to improve the headway regularity and commercial speed. 

Specifically, the contributions of this paper are as follows. 

(1) The dwell time of each train is affected by both the number of entering and exiting passengers. In contrast, exist-

ing studies usually do not consider passenger flow control in the train regulation problem ( Yin et al., 2016; Li et al.,

2016 ). By considering the sudden large passenger flow for high-frequency metro lines, this study constructs a cou-

pled dynamic model for the evolution of both the train traffic and the passenger load, and designs a joint optimal

train regulation and passenger flow control strategy. The proposed coupled dynamic model provides a new and more

accurate insight for the train regulation problem. 

(2) The proposed on-line optimization algorithm provides a real-time train regulation and passenger flow control strategy

in the form of a closed loop system, which can be effectively and quickly implemented for practical metro lines in

real-time. By using Lyapunov stability theory, the stability (convergence) characteristic of the metro line system has

been verified under the proposed optimization algorithm. 

The main features of our paper are summarized in Table 1 based on the four characteristics (research problem, traffic

model, solution methodology and stability property) as compared to several related studies. The rest of this paper is orga-

nized as follows. In Section 2 , a coupled dynamic model for the evolution of the departure time and the passenger load

of each train is presented. In Section 3 , the optimal joint train regulation and passenger flow control strategy for high-

frequency metro lines is designed. In Section 4 , numerical examples are provided to demonstrate the effectiveness of the

proposed methods. We conclude this paper in Section 5 . 

2. Problem description 

We consider a metro-type railway line with N stations and one terminal station, and an ordered set of trains are running

on the stations and stop at the stations to allow passengers to embark and disembark. A metro-type railway line system

mainly involves stations, trains and passengers. The aim of the operation management is to ensure the trains can transport

all the passengers from their origin station to destination station in a safe and efficient way. An illustration for the operation

of a metro-type railway line is shown in Fig. 1 . 

In real-time operations of metro lines, disturbances and disruptions are inevitable, such as equipment failure or inade-

quate driver/passenger actions, etc. When a disturbance or a disruption occurs, the optimized train timetable is not able to

keep the original optimized objective, and a train regulation process has to be initiated to reduce train delays and the effect

of the unpredicted events. Especially, during the peak hours of the day, the passenger demands for most of the stations are

extremely large. As a result, when the train arrives at one station, the passenger load of the train is usually over its nominal

passenger load. Under this case, if the passenger arrival flow is not controlled, the surplus passengers will try to get on

the train, which will result in making the train delays even longer, and even worse the surplus passengers could lead to
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Table 2 

Indices and parameters used throughout the paper. 

i = 1 , 2 , . . . , Z: indices of the trains on the line; 

j = 1 , 2 , . . . , N: indices of the stations on the line; 

System parameters 

R i 
j 
: the nominal running time of train i from station j to station j + 1 ; 

D j : the minimal dwell time at a station when no passenger gets on the train; 

α: the delay rate for one passenger to get on or off a train; 

β i 
j 
: a disembarking proportionality factor at station j for train i ; 

γ i 
j 
: the passenger arrival rate to station j for train i ; 

H : the scheduled headway; 

l max : the maximum passenger load capacity of the train; 

State variables 

t i 
j 
: the actual departure time of the i th train from the j th station; 

T i 
j 
: the nominal departure time of the i th train from the j th station; 

r i 
j 
: the running time of the i th train from the j th station to the j + 1 th station; 

s i 
j 
: the dwell time of the i th train at the j th station; 

l i 
j 
: the actual load of train i between station j and ( j + 1) ; 

L i 
j 
: the nominal load of train i between station j and ( j + 1) ; 

m 

i 
j 
: the number of passengers entering train i at station j ; 

n i 
j 
: the number of passengers exiting train i at station j ; 

w 1 
i 
j 
: the uncertain disturbance term to the running time; 

w 2 
i 
j+1 

: the uncertain disturbance term to the dwell time; 

T : the considered time horizon; 

M : the finite prediction horizon; 

Decision variables 

u 1 
i 
j 
: the control strategy to magnify the running time; 

u 2 
i 
j 
: the dwell time adjustment; 

p i 
j 
: the control strategy to magnify the number of passengers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a potential unsafe environment in the metro line system. Therefore, when trains deviate from their nominal time schedule

under a disturbance or a disruption, it is necessary to consider both the train regulation strategy and the passenger flow

control strategy to improve the safety and efficiency for the metro line system. 

To address this problem, the train traffic dynamics are first constructed, and then the passenger load dynamics of the

train are developed. Moreover, by combining the coupled relationship between the train traffic dynamics and the passenger

load dynamics, the joint train traffic and passenger flow dynamic model is presented. Compared to the existing studies

which used a time-dependent origin-destination (OD) matrix to represent passenger demands ( Niu et al., 2015; Yin et al.,

2016 ), this study applies a dynamic equation to describe the dynamic evolution of the passenger load of the train from

one station to the next, which is determined by the number of entering and exiting passengers. The number of entering

passengers is assumed to be proportional to the waiting time between successive trains ( Fernandez et al., 2006; Lin and

Sheu, 2010 ), which is time-dependent, and the number of the exiting passengers is assumed to be proportional to the

number of passengers on the train ( Eberlein et al., 2001 ), which is also time-dependent. Throughout this paper, the symbols

and parameters are listed in Table 2 . 

2.1. The train traffic dynamics 

Based on the discrete-event approach proposed by Van Breusegem et al. (1991) , we present the train traffic dynamics

according to the operation of high-frequency metro lines. The train traffic dynamics for the actual departure time of train i

from station j + 1 is given as follows. 

t i j+1 = t i j + r i j + s i j+1 , (1)

and the running time of train i from station j to j + 1 is presented as 

r i j = R 

i 
j + u 1 

i 
j + w 1 

i 
j , (2)

where u 1 
i 
j 

is the control strategy to magnify the running time of train i between stations j and j + 1 , which is applied to

increase the running time when u 1 
i 
j 
> 0 , and decrease the running time when u 1 

i 
j 
< 0 . w 1 

i 
j 

is the uncertain disturbance

term to the running time (such as equipment failure or inadequate driver/passenger action). 

Considering the fact that the dwell time of the train is affected by both the number of entering and exiting passengers,

the dwell time s i 
j+1 

is modelled as 

s i j+1 = α(m 

i 
j+1 + n 

i 
j+1 ) + D j+1 + u 2 

i 
j+1 + w 2 

i 
j+1 , (3)
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Fig. 2. An illustration of the train traffic dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where α is the delay rate representing the time necessary for one passenger to get on or off a train, m 

i 
j+1 

and n i 
j+1 

are the

number of passengers entering and exiting train i at station j + 1 , respectively. u 2 
i 
j+1 

is the dwell time adjustment on train

i at station j + 1 , and w 2 
i 
j+1 

is the uncertain disturbance term to the dwell time. 

Then, by combining (1) –(3) , the state-space model for the train traffic dynamics is described by 

t i j+1 = t i j + R 

i 
j + α(m 

i 
j+1 + n 

i 
j+1 ) + D j+1 + u 

i 
j + w 

i 
j , (4) 

where u i 
j 
= u 1 

i 
j 
+ u 2 

i 
j+1 

and w 

i 
j 
= w 1 

i 
j 
+ w 2 

i 
j+1 

. An illustration of the train traffic dynamics for a metro line is plotted in

Fig. 2 , where Fig. 2 (a) is the case without train regulation and Fig. 2 (b) is the case with train regulation. The dotted line

represents the nominal timetable, and the solid line denotes the actual train timetable. 

From Fig. 2 (a), we can find that when the disturbance occurs for the running time of train i − 1 at station j , train i − 1 is

delayed when arriving at station j + 1 . At the same time, due to the delay of train i − 1 , the number of arriving passengers is

increased, and the train delay increases at station j + 1 with the accumulation of passengers. Furthermore, by the headway

safety constraints, the next train i is also delayed from station j to station j + 1 . The train delay increases from one station

to the next with the accumulation of passengers, which shows the instability of the metro line system. So it is necessary

to implement train regulation to recover from the train delays and prevent the instability of the metro line operation. From

Fig. 2 (b), we can observe that under the train regulation strategy, by adjusting the running time and the dwell time of train

i − 1 , and furthermore controlling the passenger arrival flow, the delay of train i − 1 is effectively reduced, and the delay of

train i is also reduced and recovered to the nominal timetable at station j + 1 . 

2.2. The passenger load dynamics 

When the train arrives at the station, there are passengers entering the train and passengers exiting the train. Then the

dynamic evolution of the passenger load of the train at the station is given by 

l i j+1 = l i j + m 

i 
j+1 − n 

i 
j+1 + p i j+1 . (5) 

where p i 
j+1 

is the control strategy to magnify the number of passengers entering train i at station j + 1 , which is imple-

mented during rush hour or on a special holiday for the sudden gathering of passengers, and thus is a non-positive value to

reduce the passenger load. Under the control strategy for the passenger flow, the actual number of passengers entering the

train is changed to m 

i 
j+1 

+ p i 
j+1 

. In addition, the passenger load dynamic is mainly determined by the number of entering

and exiting passengers and not affected by the external disturbance. 
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Fig. 3. The illustration of the passenger load dynamics of the train. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The number of entering passengers m 

i 
j+1 

is assumed to be proportional to the waiting time between successive trains,

which is given as 

m 

i 
j+1 = γ i 

j+1 (t i j+1 − t i −1 
j+1 

) , (6)

where γ i 
j+1 

represents the passengers arrival rate, which can be measured in real time by the monitoring techniques

( Fernandez et al., 2006 ). Here it should be pointed out that if the number of entering passengers is large and results in

an overload of the train, the control strategy p i 
j+1 

is conducted to reduce the number of entering passengers to satisfy the

limited capacity of the train for carrying passengers. In particular, with the control strategy for the passenger flow, the actual

dwell time s i 
j+1 

is changed to 

s i j+1 = α(m 

i 
j+1 + n 

i 
j+1 + p i j+1 ) + D j+1 + u 2 

i 
j+1 + w 2 

i 
j+1 , (7)

which shows the control strategy for the passenger flow not only adjusting the number of passengers entering the train,

but also changing the dwell time of the train. Moreover, we assume that the train stops at each station. The state constraint

for the passenger load is considered to satisfy the requirement of the maximum capacity of the train, and the control

constraint for the running time adjustment u 1 ij and dwell time adjustment u 2 ij is considered to ensure that the final dwell

time is larger than the minimum required dwell time D j and meanwhile the speed constraint is satisfied for the running

time adjustment. 

The number of exiting passengers is assumed to be proportional to the number of passengers in the train. That is, the

number of exiting passengers is equal to 

n 

i 
j+1 = β i 

j+1 l 
i 
j (8)

where l i 
j 

is the load of train i between station j and j + 1 , and β i 
j+1 

is a proportionality factor that depends on station j + 1

and on the hour of travel for train i , which is statistically estimated from the passenger demand OD matrices during the

specific time periods of the day, and thereby represents the OD demand from different OD pairs for each station. In addition,

different to the time-dependent OD matrix adopted in Niu et al. (2015) and Yin et al. (2016) , the dynamic Eq. (5) describes

the dynamic evolution of the passenger load from one station to the next one for each train, which facilitates to design the

dynamic passenger flow control to adjust the overload of the train. 

Then by combining (5) –(8) , the passenger load dynamics of the train can be written as 

l i j+1 = l i j + γ i 
j+1 (t i j+1 − t i −1 

j+1 
) − β i 

j+1 l 
i 
j + p i j+1 , (9)

which indicates that the passenger load dynamics of the train is also affected by the train traffic dynamics. Moreover, the

illustration for changing the load of the train for carrying passengers is plotted in Fig. 3 , in which the passenger load

dynamics is affected by the departure time of the train. 

2.3. The joint dynamic model 

By combining the above Eqs. (4) and (9) , we can obtain the joint dynamic model of the departure time and the passenger

load of the train as follows. {
t i 

j+1 
= t i 

j 
+ R 

i 
j 
+ α(γ i 

j+1 
(t i 

j+1 
− t i −1 

j+1 
) + β i 

j+1 
l i 

j 
+ p i 

j+1 
) + D j+1 + u 

i 
j 
+ w 

i 
j 
, 

l i 
j+1 

= l i 
j 
+ γ i 

j+1 
(t i 

j+1 
− t i −1 

j+1 
) − β i 

j+1 
l i 

j 
+ p i 

j+1 
, 

(10)
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which shows that the departure time and the passenger load of the train influence each other. From Eq. (10) , we can also

observe that if one train is delayed, the train delay increases from one station to the next station with the accumulation of

passengers, which indicates the possible instability of the metro line. 

Let x i 
j 
= [ t i 

j 
, l i 

j 
] T and ū i 

j 
= [ u i 

j 
, p i 

j+1 
] T . According to Eq. (10) , the joint dynamic model of the departure time and the pas-

senger load of the train can be obtained together as. 

x i j+1 = A 

i 
j x 

i 
j + B 

i 
j x 

i −1 
j+1 

+ C i j ̄u 

i 
j + G 

i 
j (D j+1 + R 

i 
j + w 

i 
j ) . (11) 

where x 0 
j 
= [0 , 0] T , A 

i 
j 
= 

⎡ 

⎢ ⎣ 

1 

1 −αγ i 
j+1 

αβ i 
j+1 

1 −αγ i 
j+1 

γ i 
j+1 

1 −αγ i 
j+1 

1 − β i 
j+1 

+ 

αγ i 
j+1 

β i 
j+1 

1 −αγ i 
j+1 

⎤ 

⎥ ⎦ 

, B i 
j 
= 

⎡ 

⎢ ⎣ 

−αγ i 
j+1 

1 −αγ i 
j+1 

0 

−γ i 
j+1 

1 −αγ i 
j+1 

0 

⎤ 

⎥ ⎦ 

, C i 
j 
= 

⎡ 

⎣ 

1 

1 −αγ i 
j+1 

α
1 −αγ i 

j+1 

γ i 
j+1 

1 −αγ i 
j+1 

1 

1 −αγ i 
j+1 

⎤ 

⎦ , G 

i 
j 
=

⎡ 

⎣ 

1 

1 −αγ i 
j+1 

γ i 
j+1 

1 −αγ i 
j+1 

⎤ 

⎦ . The derivation of (11) is given in Appendix A . 

The joint dynamic model describes the dynamic changing of the departure time and the passenger load of the train,

which provides a more general model for the operation management of the metro line system under disturbance or disrup-

tion. 

It is a common practice to operate with different scheduled headway for different operating hours, e.g., peak and off-peak

hours. Then for a specific duration of operating hours, a nominal joint traffic and passenger flow model can be constructed

as follows. 

T i j+1 = T i j + R 

i 
j + α(γ i 

j+1 (T i j+1 − T i −1 
j+1 

) + β i 
j+1 L 

i 
j ) + D j+1 (12) 

and 

L i j+1 = L i j + γ i 
j+1 (T i j+1 − T i −1 

j+1 
) − β i 

j+1 L 
i 
j . (13) 

The nominal timetable is characterized by a constant time interval H between two successive trains, i.e., H = T i 
j+1 

−
T i −1 

j+1 
. The scheduled headway H of the corresponding operating hours is determined by the service operating requirement,

capacity of the train and passenger flow of the operating hours. In particular, the scheduled headway H is smaller during

the peak hours. 

Moreover, to improve the headway regularity and commercial speed, we define the error vector as e i 
j 
= [ t i 

j 
− T i 

j 
, l i 

j 
− L i 

j 
] T .

According to (12) and (13) , together with (11) , we can obtain the error dynamics for the joint dynamic model as follows. 

e i j+1 = A 

i 
j e 

i 
j + B 

i 
j e 

i −1 
j+1 

+ C i j ̄u 

i 
j + G 

i 
j w 

i 
j . (14) 

where A 

i 
j 
, B i 

j 
, C i 

j 
, and G 

i 
j 

take the same forms as in (11) . The derivation of (14) is given in Appendix B . 

Remark 2.1. For the error dynamics (14) , noting that e i 
j 

represents the deviations of the actual departure time of the train

from the nominal departure time and the actual passenger load of the train from the nominal passenger load, then the

minimization of ‖ e i 
j 
‖ means to improve the operational efficiency of the metro line for recovering train delays from distur-

bances. Moreover, if e i 
j 
→ 0 , then t i 

j 
→ T i 

j 
and l i 

j 
→ L i 

j 
, which prevents the instability of the metro line operation. Therefore,

the stability of the metro line operation is converted to the stability problem of the dynamic system (14) at zero, which

facilitates applying system stability theory to derive the stability condition of metro line operations. To conveniently apply

system stability theory, we further define the matrix form of the joint dynamic model in the next section. 

2.4. The matrix form of the joint dynamic model 

For the train traffic model of metro lines, there are mainly three types of models ( Van Breusegem et al., 1991 ), which are

station sequential model (SSM), train sequential model (TSM), and real time model (RTM). In these three models, the station

sequential model (SSM) is always applied for the generation of the train timetables ( Cury et al., 1980; Assis and Milani,

2004 ), while the real time model (RTM) is the only one that allows for a complete on-line feedback control ( Van Breusegem

et al., 1991 ). In this paper, we adopt the real time model (RTM) to describe the train operations of metro lines. According

to (11) , we now propose the formulation for the joint dynamic model based on information propagation considerations,

that is, x i 
j+1 

is generated by x i 
j 

and x i −1 
j+1 

for all the trains and stations. Then, regarding the variable X k , the state variable

of the matrix form for the joint dynamic model is considered as X k = [ x k −1 
1 

, x k −2 
2 

, . . . , x k −N 
N 

] T , which denotes the departure

time of the trains and the passenger load of the trains at all the stations, where the index k > N . The dimension of the

state variable X k is double the number of stations for the metro line. Here we assume that the components of the state

vector X k are all located at the same time interval. Because of the traffic security requirements for metro lines (e.g. at

most one train at a time in a section between two successive stations), the deviations x i 
j 

(train i at station j ) and x i −1 
j+1 

(preceding train at the next station) are known in a short time, i.e, all the components of X are known in a short time
k 
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Fig. 4. The illustration of the transfer from state X k to state X k +1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( Van Breusegem et al., 1991 ). Thus, this assumption is rational. To show the state variable X k clearly, we take an example

for a metro line with N = 5 stations, and the illustration of the transfer from state X k to state X k +1 is plotted in Fig. 4 , in

which X k = [ x k −1 
1 

, x k −2 
2 

, x k −3 
3 

, x k −4 
4 

, x k −5 
5 

] T and X k +1 = [ x k 
1 
, x k −1 

2 
, x k −2 

3 
, x k −3 

4 
, x k −4 

5 
] T . In particular, it should be noted that for stage

k , x k −1 
1 

represents the state of the (k − 1) th train at station 1. Similarly, x k −2 
2 

is the state of the (k − 2) th train at station 2. 

Then by combining (11) , the matrix form of the joint dynamic model can be expressed as 

X k +1 = Ā k X k + B̄ k U k + Ḡ k (w k + R k + D ) , (15)

where k indexes the stage of the joint dynamic model, X k is the state vector (consisting of the departure time

and the passenger load of the train), the control vector U k = [ ̄u k 
0 
, ū k −1 

1 
, . . . , ū k −N+1 

N−1 
] T , the disturbance vector w k =

[ w 

k 
0 
, w 

k −1 
1 

, . . . , w 

k −N+1 
N−1 

] T , and its dimension is N , R k = [ R k 
0 
, R k −1 

1 
, . . . , R k −N+1 

N−1 
] T , D = [ D 1 , D 2 , . . . , D N ] 

T , and the definitions of

matrices Ā k , B̄ k , and Ḡ k are given in Appendix C . 

According to the matrix form of the joint dynamic model (15) , the system dimension is 2 N , which is only related to the

number of stations in the metro line and not related to the number of trains. Moreover, the system matrix Ā k describes

the intrinsically coupled dynamic relationship between the train traffic dynamics and the train load dynamics, the control

matrix B̄ k represents the coupled relationship between the train regulation and passenger flow control, and the matrix Ḡ k is

related to the system parameters for the disturbance. 

Moreover, according to (14) , the matrix form of the joint error dynamic model is obtained as 

E k +1 = Ā k E k + B̄ k U k + Ḡ k w k , (16)

where the error state vector E k = [ e k −1 
1 

, e k −2 
2 

, . . . , e k −N 
N 

] T , which consists of errors of the departure time and the passenger

load deviations away from the nominal state. And the meaning of the system parameters Ā k , B̄ k , and Ḡ k are the same to

that as in formula (15) . 

It should be noted that the proposed joint error dynamic model (16) is in fact a linear time-varying discrete systems,

in which the system parameters Ā k , B̄ k , and Ḡ k and the disturbance w k are changing with time, and not pre-known. The

traditional dynamic programming method is hard to deal with this system (16) with real-time updated system parameters. It

requires an on-line optimization technique to deal with this system (16) . A model predictive control (MPC) algorithm, as an

on-line optimization technique, can be implemented to cope with system (16) with real-time updating system parameters

and disturbance. 

3. Problem formulation and solution 

3.1. Problem formulation 

The design of the joint dynamic train regulation and passenger flow control strategy for metro lines is to improve the

headway regularity and commercial speed. To address this problem, we consider the following cost function for the joint

dynamic model of metro lines. 

J = 

∑ 

i, j 

{ 

e i j 
T 

P i j e 
i 
j + (e i j − e i −1 

j 
) T Q 

i 
j (e i j − e i −1 

j 
) + ( ̄u 

i 
j ) 

T R 

i 
j ̄u 

i 
j 

} 

, (17)
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(

 

where P i 
j 
, Q 

i 
j 
, and R i 

j 
are given positive definite weighted matrices. The first term in (17) denotes the sum of the errors of

the actual timetable from the nominal timetable and the actual load of the train from the nominal load, which is used for

reducing the deviation of the practical timetable and the load of the train to improve the commercial speed. The weighted

matrix P i 
j 
= [ 

b 
1 i 

j 
0 

0 b 
2 i 

j 

] , where b 1 
i 
j is the weight for the timetable error t i 

j 
− T i 

j 
and b 2 

i 
j is the weight for the train load error

l i 
j 
− L i 

j 
. During the peak hours with the overcrowded passenger arrival flow, the actual train load is usually larger than the

nominal load. Under this case, the minimization of b 2 
i 
j (l i 

j 
− L i 

j 
) 2 means that the passenger control should be implemented

to reduce the train load l i 
j 
. Otherwise, for the case that the actual train load without passenger flow control is less than the

nominal load, we can get that l i 
j−1 

+ m 

i 
j 
− n i 

j 
< L i 

j 
according to the dynamic Eq. (5) . Under this case, if we further consider

the passenger flow control, the minimization of the quadratic function b 2 
i 
j (l i 

j 
− L i 

j 
) 2 for the actual train load l i 

j 
with the

control variable p i 
j 

is equivalent to the minimization of b 2 
i 
j (l i 

j−1 
+ m 

i 
j 
− n i 

j 
+ p i 

j 
− L i 

j 
) 2 , where the only decision variable is p i 

j 
.

Consider that the control variable p i 
j 

is non-positive ( p i 
j 
≤ 0 ) and l i 

j−1 
+ m 

i 
j 
− n i 

j 
< L i 

j 
. Then, it is clear that the minimization

of b 2 
i 
j (l i 

j−1 
+ m 

i 
j 
− n i 

j 
+ p i 

j 
− L i 

j 
) 2 implies that the control variable p i 

j 
= 0 , i.e., the control action p i 

j 
is not required, which

satisfies the practical requirement. In the literature, this type of the quadratic performance index for the train load errors

has be also adopted by Campion et al. (1985) . Therefore, it is reasonable to adopt quadratic functions to minimize the train

load errors under the proposed passenger flow control framework. For the second term of (17) , we choose the weighted

matrix Q 

i 
j 

of the form Q 

i 
j 
= [ 

q i 
j 

0 

0 0 
] , where q i 

j 
> 0 is a given constant. Then the second term is related to headway deviation

of the trains, which is used for improving the headway regularity, and meanwhile reducing the average waiting time for the

passengers. The third term deals with the amplitude of the control action. The minimization of the amplitude of the control

action is used to penalize the control actions that are too large, so as to reduce the control cost in practical applications

( Van Breusegem et al., 1991; Fernandez et al., 2006 ). 

In metro-type railways operated according to an offered timetable, deviations are usually measured by two performance

indicators, namely, punctuality and regularity, where punctuality refers to the deviations of the actual departure time from

the nominal departure time (timetable errors), whereas regularity refers to the headway deviations between consecutive

departures ( Mannino and Mascis, 2009 ). When the disturbances happen, the reduction of the headway deviations does

not ensure that the deviations of the actual departure time can be reduced, which may increase the deviations of the

actual departure time. Thus, the train regulation seeks a compromise between timetable (the actual departure time) and

headway deviations during the transient period ( Van Breusegem et al., 1991; Fernandez et al., 2006; Lin and Sheu, 2010 ).

The weighted matrices P i 
j 

and Q 

i 
j 

in (17) depend on the practical control purpose and reflect the trade-off between the

regulation objectives (the headway regularity and commercial speed). 

Moreover, based on the definition of the matrix form for the joint dynamic model (16) , the matrix form of the objective

function (17) is formulated as follows. 

J = 

j f ∑ 

k = j 0 

{
E T k P E k + (E k +1 − E k ) 

T Q(E k +1 − E k ) + U 

T 
k RU k 

}
, (18) 

where P, Q and R are given positive definite weighted matrices, which are composed of P i 
j 
, Q 

i 
j 
, and R i 

j 
and can be directly

obtained from (17) . j 0 and j f are the initial and terminal state numbers, respectively. 

In addition, to ensure the safe operation of the metro line, we consider the following constraints. 

1) State constraints for the departure time: To ensure the safety distance between two neighbouring trains, we have t i 
j 
−

t i −1 
j 

≥ t min , where t min is the minimum allowable safety headway. Moreover, the state constraints for the departure time

of each train can be converted as the error state constraints for the departure time of each train, which is given as 

(t i j − T i j ) − (t i −1 
j 

− T i −1 
j 

) ≥ t min − H, (19) 

where t min and H are given. 

2) State constraints for the passenger load: To satisfy the requirement of the capacity of the train, the load of the train l i 
j 

has

the constraint: l i 
j 
≤ l max , where l max is the maximum capacity of the train for passengers. Similarly, it can be converted

as the error state constraints for the passenger load of the train, which is presented as 

(l i j − L i j ) ≤ l max − L i j , (20) 

where l max and L i 
j 

are given. 

3) Control constraints: For the practical limits for the control input, we consider the following control constraints 

[ u min , p min ] 
T ≤ ū 

i 
j ≤ [ u max , p max ] 

T (21) 

where [ u min , p min ] is the minimum allowable vector for the control input and [ u max , p max ] is the maximum allowable
vector for the control input, and here p max = 0 according to Eq. (5) . 
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Then, according to the matrix form of the joint dynamic model, the above constraints can be rewritten in the following

matrix form. 

(1) State constraints for the departure time: 

H 1 (E k −1 − E k ) ≤ (H − t min ) I N×1 , (22)

where H 1 is a matrix of dimension N × 2 N , in which for each row i of the matrix, the element H 1 (i, 2 i − 1) = 1 , and

all other elements for this row equal to zero, I N × 1 is a matrix with N × 1 dimension, and all the elements equal to

1. 

(2) State constraints for the passenger load: 

H 2 E k ≤ L k , (23)

where H 2 is a matrix of dimension N × 2 N , in which for each row i of the matrix, the element H 2 (i, 2 i ) = 1 , and all

other elements for this row equal to zero, L k = [ l max − L k −1 
1 

, l max − L k −2 
2 

, . . . , l max − L k −N 
N 

] T . 

(3) Control constraints: 

U k ≤ U max , −U k ≤ −U min , (24)

where U max is a column vector of dimension 2 N for which the elements in the odd rows equal u max , and in the even

rows equal p max . Similarly, U min is also a column vector of 2 N dimension for which the elements in the odd rows

equal u min , and in the even rows equal p min . 

Given the train traffic dynamics and the passenger load dynamics of the previous section, by considering the matrix

form of the joint dynamic model (16) and the objective function (18) , the joint train regulation and passenger flow control

problem can be converted to the problem of solving the following optimal control problem: 

min 

U k 

j f ∑ 

k = j 0 

{
E T k P E k + (E k − E k −1 ) 

T Q(E k − E k −1 ) + U 

T 
k RU k 

}
(25)

s.t. E k +1 = Ā k E k + B̄ k U k + Ḡ k w k , 

H 1 (E k −1 − E k ) ≤ (H − t min ) I N×1 , 

H 2 E k ≤ L k , 

U k ≤ U max , 

−U k ≤ −U min . 

For the above optimal control problem (25) , the first constraint is the state equation, the second and third are state

constraints and the last two constraints are the control constraints. Since the system parameters Ā k , B̄ k , and Ḡ k and the

disturbance w k are time-dependent, a traditional dynamic programming method with pre-known system parameters is hard

to deal for the above optimal control problem. To handle it, we adopt a model predictive control algorithm, an on-line

optimization technique, to solve the formulated optimal control problem (25) . 

3.2. The MPC algorithm 

Model predictive control (MPC) is a control methodology that implements repeatedly optimal control in a rolling horizon

manner. In MPC, at each sample step k , we compute an optimal control input that minimizes a given cost function over a

pre-specified prediction horizon. The illustration for the principle of the MPC for the optimal control problem (25) is plotted

in Fig. 5 , where the circled lines represent the measured and predicted states, and the solid lines denote the optimal control

sequence. 

As shown in Fig. 5 (a), at each sample step k , the optimal control problem is solved online based on the measured current

state E k (the errors of the departure time of the trains from the nominal state and the errors of the passenger loads from the

nominal state at stage k ) over an M step finite prediction horizon ( k + 1 , . . . , k + M), and a set of optimal control sequence

are obtained as U k , U k +1 , . . . , U k + M−1 . The prediction states E k + i are calculated based on the evolution of the state of the

system (16) under control. In order to take into account the changes of the system parameters and disturbances, at each

sample step k , only the first control vector U k (joint train regulation and passenger flow control at stage k ) of the optimal

control sequence is implemented to the system, which can be observed in Fig. 5 (b). At the next step k + 1 , the optimal

control problem is solved again with the newly updated information of the measurement state E k +1 , and also only the first

control vector is applied to the system, and so forth. Within the framework of MPC, a set of optimization problems are

repeatedly solved online in a rolling horizon manner based on the real-time updated system information, which makes this

method efficient to solve the above optimal control problem (25) with the updated system parameters and disturbances. 

Specifically, the MPC approach for the metro lines can be characterized by the following three components: 

(1) The prediction model of system. 
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Fig. 5. An illustration of the principle of the MPC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The prediction model of the dynamic system is used to predict the effects of the control inputs on the evolution of

the dynamic system over a given prediction horizon and to determine the control strategy that optimizes a given cost

function. For the metro line system, the proposed model (16) of the metro line system is used to predict the future

errors of the departure time of the trains and the future errors of the passenger loads of the trains based on the

measured current state E k . 

(2) The optimization problem. 

Based on the model of the dynamic system, at each sample step k , the optimization problem over a given predic-

tion horizon is solved online, which determines a set of optimal control sequences. For the metro line system, the

optimization determines the joint train regulation and passenger flow control strategy that improves the headway

regularity and commercial speed of high-frequency metro lines under the constraints based on the updated informa-

tion of the measurements. Specially, at each sample step k , associated with (25) is the following optimization problem

to compute the control input. 

min 

U k + j 

M−1 ∑ 

j=0 

{
E T k + j+1 P E k + j+1 + (E k + j+1 − E k + j ) 

T Q(E k + j+1 − E k + j ) + U 

T 
k + j RU k + j 

}
(26) 

s.t. E k + j+1 = Ā k + j E k + j + B̄ k + j U k + j + Ḡ k + j w k + j , 

H 1 (E k + j − E k + j+1 ) ≤ (H − t min ) I N×1 , 

H 2 E k + j+1 ≤ L k + j+1 , 

U k + j ≤ U max , 

−U k + j ≤ −U min , j = 0 , 1 , . . . , M − 1 . 

(3) The rolling horizon. 

When the optimal control input is obtained from the optimization, the first control vector of the optimal result is

implemented to the process. At the next step k + 1 , the prediction model (16) of the metro line system receives the

new measured information, the whole prediction horizon is shifted one step forward, and the optimization starts

again. This rolling horizon scheme makes MPC a closed-loop control, which enables the system to get feedback from

real time information. 

Moreover, at each sample step k , the above optimization problem (26) can be converted to a quadratic programming (QP)

problem. Define E = [ E T 
k +1 

, E T 
k +2 

, . . . , E T 
k + M 

] T and U = [ U 

T 
k 
, U 

T 
k +1 

, . . . , U 

T 
k + M−1 

] T . Then at each prediction step k , for the measured

current state E k , the state prediction for the M step finite horizon problem is obtained from the state equation of (26) as

follows. 

E = F E k + �U, (27) 

where the definitions of matrices F and � are given in Appendix C . 
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Thus the optimal joint train regulation and passenger flow control strategy is reduced to the problem of solving a set of

quadratic programming (QP) problems at different steps. According to Eq. (26) , the equivalent QP formulation at step k for

the optimization problem (26) is presented as follows. 

min 

U 
J = U 

T (�T P̄ � + �T Q̄ � + R̄ ) U + 2 U 

T (�T P̄ F E k + �T Q̄ F E k ) + � (28)

s.t. 

⎡ 

⎢ ⎢ ⎣ 

H 3 H 4 �
H 6 �
I 2 MN 

−I 2 MN 

⎤ 

⎥ ⎥ ⎦ 

U ≤

⎡ 

⎢ ⎢ ⎢ ⎣ 

(H − t min ) I MN×1 − H 3 H 4 F E k − H 3 H 5 E k 
L − H 6 F E k 

Ū max 

−Ū min 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

where � = F T P̄ F E 2 
k 

+ F T Q̄ F E 2 
k 

is a constant, the weighted matrixes P̄ , Q̄ and R̄ can be directly obtained from the cost function

of (26) , L = [ L T 
k +1 

, L T 
k +2 

, . . . , L T 
k + M 

] T , Ū max = [ U 

T 
max , U 

T 
max , . . . , U 

T 
max ] 

T 
2 MN×1 

, Ū min = [ U 

T 
min 

, U 

T 
min 

, . . . , U 

T 
min 

] T 
2 MN×1 

. The derivation of

(28) from (26) is given in Appendix D . The other matrices H 3 , H 4 , H 5 , H 6 are defined in Appendix D . 

According to the formulated quadratic programming (QP) problem, the main algorithm of the joint optimal train regula-

tion and passenger flow control strategy for metro lines under disturbances is summarized as follows. 

Algorithm 3.1. 

• Step 1. At each sample step k, obtain the measured state E k for the error joint dynamic model (16) with the undated parameters

and disturbances. 
• Step 2. According to the measured state E k , for the given prediction horizon M , calculate the system parameters F and � for

the error joint dynamic model (16) based on the formulation (27) . 
• Step 3. For the measured state E k and obtained system parameters F and �, formulate the quadratic programming (QP)

problem (28) . 
• Step 4. By solving the quadratic programming(QP) problem (28) , get the joint optimal train regulation and passenger flow

control strategy U and apply it to the joint dynamic model (16) to obtain the next value E k +1 . 
• Step 5. Based on the measured value E k +1 , repeat Steps 1 –4 until the step horizon j f . 

It should be noted that the measured current state E k includes the current errors of the departure time of train from

the nominal state ( t i 
j 
− T i 

j 
) and the current errors of the passenger loads from the nominal state ( l i 

j 
− L i 

j 
). At each decision

step, the actual departure time of trains can be easily obtained by the metro regulation department. In particular, with

the highly developed monitoring equipments applied in each carriage of the train, the actual passenger load of trains at

each decision step can be measured more accurately. The actual passenger loads of each train are also available during the

algorithm execution. Thus, the system states (departure time and passenger load) of metro lines are fully observable. In

addition, at each step k , based on the measured current state E k , we need to predict the near-future states (departure time

and passenger load) of trains over an M step finite prediction horizon ( k + 1 , . . . , k + M) during a short time period, where

the states of the trains at stage k + M is the “boundary” which is not controlled. Within the framework of MPC, we use a

dynamic evolution model (16) to predict the near-future states of the trains based on the measured current state E k . For the

system parameters of (16) , we assume that the passenger arrival rate γ i 
j 

does not change during a short time period of the

prediction horizon, which is chosen from the measured value at step k . The disembarking proportionality factor β i 
j 

during

the prediction horizon is chosen from the estimated values by using the historical data. 

According to the proposed MPC algorithm, the optimal control problem (25) for the joint optimal train regulation and

passenger flow control strategy is formulated as a set of quadratic programming(QP) problems. By choosing the proper pre-

diction step, the proposed MPC algorithm can reduce the number of variables and constraints for the formulated quadratic

programming(QP) problems, which leads to a low online computational burden of the MPC algorithm. Thus the proposed

MPC algorithm is effective in dealing with the large-scale nonlinear optimization problem for metro lines. 

3.3. Stability analysis 

In practice, due to the instability of many metro line systems, it is desirable to design a train regulation algorithm to

ensure stability of the metro line. To further reveal the feature of the proposed MPC algorithm for the joint optimal train

regulation and passenger flow control strategy, we analyze the stability (convergence) of the metro line system under the

proposed MPC algorithm. 

The stability of the metro line system under the MPC algorithm is a complex function of the MPC parameters P, Q, R , Ā k ,

B̄ k , L k , U max and U min . Consider the state and control constraints for the metro line system with the overcrowded passenger

arrival flow. It becomes more difficult to analyze the system stability. In particular, MPC has the advantage to cope with

hard constraints on states and controls of the system. MPC of constrained systems is nonlinear necessitating the use of

Lyapunov stability theory for system stability analysis. The value function of the optimization problem could be employed

as a Lyapunov function for establishing stability of the model predictive control of the constrained discrete-time system

( Mayne et al., 20 0 0 ). Correspondingly, for the proposed MPC algorithm in this study, one can also apply the value function
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of the optimization problem (25) as a Lyapunov function to analyze the stability of the metro line system with state and

control constraints. 

To discuss the stability of the metro line system, we consider the joint error dynamic model (16) without disturbances

w j , i.e., w j = 0 . Then based on Lyapunov stability theory, we present the stability result of the joint error dynamic model

under the proposed MPC algorithm as the following theorem. 

Theorem 3.1. Consider the joint error dynamic model (16) under the proposed MPC algorithm based on the following optimiza-

tion problem 

min 

U 
J(U, E k ) = 

M−1 ∑ 

j=0 

{
E T k + j+1 P E k + j+1 + (E k + j+1 − E k + j ) 

T Q(E k + j+1 − E k + j ) + U 

T 
k + j RU k + j 

}
(29) 

s.t. E k + j+1 = Ā k + j E k + j + B̄ k + j U k + j + Ḡ k + j w k + j , 

H 1 (E k + j − E k + j+1 ) ≤ (H − t min ) I N×1 , 

H 2 E k + j+1 ≤ L k + j+1 , 

U k + j ≤ U max , 

−U k + j ≤ −U min , j = 0 , 1 , . . . , M − 1 . 

Suppose that the above optimization problem is feasible at the initial time k = j 0 , the system parameters Ā k and B̄ k are given, and

E k + M 

= 0 . Then for all P > 0, Q > 0, and R > 0, it holds that lim k →∞ 

E k = 0 , that is, the joint error dynamic model (16) under the

proposed MPC algorithm is stable at zero subject to the constraints, and the actual timetable converges to the nominal timetable. 

Proof. At first, for the joint error dynamic model (16) under the proposed MPC algorithm, we choose the value function of

the above optimization problem (29) as a Lyapunov function, i.e., 

V (k ) = J(U 

∗(k ) , E k ) , (30) 

where U 

∗(k ) = { U 

∗
k 
, U 

∗
k +1 

, . . . , U 

∗
k + M−1 

} denotes the optimal control sequence for the optimal problem (29) . It is clear that

V ( k ) is non-negative. 

Then for the optimal control solutions U 

∗( k ) at step k , we can further get the state vector E(k ) = [ E T 
k +1 

, E T 
k +2 

, . . . , E T 
k + M 

] T 

at step k . It is clear that U 

∗( k ) and E ( k ) satisfy the constraints. Thus for the next step k + 1 , we construct the control

sequence U(k + 1) = { U 

∗
k +1 

, U 

∗
k +2 

, . . . , U 

∗
k + M−1 

, 0 } . It is clear that U(k + 1) is feasible at step k + 1 for the optimal problem (29) .

By substituting U(k + 1) into the objective function, we can obtain J(U(k + 1) , E k +1 ) . Then by combining the assumption

E k + M 

= 0 , we have 

V (k + 1) = J(U 

∗(k + 1) , E k +1 ) 

≤ J(U(k + 1) , E k +1 ) 

= V (k ) − E T k +1 P E k +1 − (E k +1 − E k ) 
T Q(E k +1 − E k ) − U 

T 
k RU k , (31) 

which means that V (k + 1) − V (k ) ≤ 0 , and V ( k ) is decreasing and lower-bounded by 0. Then according to Lyapunov stability

theory, it holds that lim k →∞ 

E k = 0 , i.e., the joint error dynamic model (16) under the proposed MPC algorithm is stable at

zero subject to the constraints, and the actual timetable will converge to the nominal timetable. The proof is complete. �

The result in Theorem 3.1 indicates the proposed MPC algorithm ensures the stability of the joint train traffic system

without disturbances, which means that when the disturbances for the train regulation system disappear, the train traffic

system converges to a stable state, which guarantees a good performance for the train regulation system. With the assump-

tion of the observability, the considered metro line system is stable under the proposed MPC algorithm, which also reveals

the controllability of the considered metro line system. Moreover, it should be noted that since the proposed MPC algorithm

is based on state-feedback information, which allows the train to effectively adjust its speed as time evolves, and thus it

is robust to uncertainty and disturbances. In addition, the considered objective function in this study takes a positive def-

inite quadratic form. Thus the corresponding value function is also positive definite, which can be adopted as a Lyapunov

function. If we change the control criteria to minimize the maximum span, the corresponding objective function of the

formulated optimization problem will be changed, which may not be a positive definite quadratic form. Under this case,

the value function of the optimization problem may not be employed as a Lyapunov function for establishing a stability

condition. The stability analysis will become more difficult, which may resort to other methods for stability analysis. 

4. Numerical examples 

In this section, to demonstrate the performance of the proposed joint optimal dynamic train regulation and passenger

flow control strategy for metro lines, we apply our proposed model and method to the actual Beijing metro line 9 that

consists of 13 stations (i.e., N = 12 ) through three traffic scenarios. Beijing metro line 9 is a busy metro line including the

largest railway station of Beijing (Beijing West Railway) and six transfer stations. During the peak hours of the day, the

passenger flow in many stations is extremely large, which makes the arriving train usually overloaded and largely affects
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Fig. 6. Beijing metro line 9 map. 
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the operational efficiency and also leads to a safety hazard for the metro line system. Thus, it is necessary to design a joint

dynamic train regulation and passenger flow control strategy to manage the entire metro line system, for improving the

headway regularity and commercial speed under uncertain disturbances. 

The map of the Beijing metro line 9 is shown in Fig. 6 . We consider the single direction of line 9 from station Guo-

gongzhuang to station National Library. The delay rate α is given as 0.02. The considered time step horizon is T = 20 , the

prediction step horizon is chosen as M = 3 and the scheduled headway is H = 180 s. The minimum allowable safety headway

 min = 160 s, and we have H − t min = 20 s. The maximum capacity of the train for passengers l max = 20 0 0 , and we assume

that l max − L i 
j 
≤ 50 . The control constraints for the control force of the timetable are set as u min = −20 and u max = 25 , which

means that the increase of the adjusting running time and dwell time is not allowed to exceed 25 s and the decrease is not

to exceed 20 s, and the control constraints for the control force of the passenger flow are set as p min = −30 and p max = 0 ,

i.e., the decrease the adjusting passengers is not to exceed 30. In scenario 1, we compare our proposed method with other

control policies in which the system parameters are considered as constant, to illustrate the benefit of our proposed joint

dynamic control strategy for improving the headway regularity and commercial speed of metro lines. In scenario 2, we

design the joint dynamic control strategy for the metro line with changing system parameters, and in scenario 3, we inves-

tigate the effect of the different weights in the cost function for improving the headway regularity and commercial speed.

We choose the operating condition of the metro system during the morning peak hours from 7:00 am to 9:00 am. The QP

formulation defined in (28) is solved by using the quadprog function from the MATLAB optimization tool box in each step of

the simulation to find the optimal value as the joint optimal dynamic train regulation and passenger flow control strategy

for metro lines. 

4.1. Scenario 1: comparison with other control polices 

To valid the effectiveness of the proposed joint optimal dynamic train regulation and passenger flow control strategy

in this study, we compare it to the case with ū i 
j 
= 0 and the case with a traditional dynamic programming (DP) policy,

respectively. 

The system parameters and initial conditions are presented in Tables 3 and 4 , respectively. The system parameters in

each station are assumed to be constant. The passenger arrival rate γ i 
j+1 

for the busy station (such as a transfer station)

is normally larger than that of nontransfer stations, and the coefficient β i 
j+1 

of the proportionality factor for exiting pas-

sengers for the transfer station is bigger than that of nontransfer stations. These values of the system parameters given in

Table 3 for each station are different, which are based on the actual operating conditions of each station on metro line 9.

The initial stage is chosen from time 7:00 am, and Table 4 shows that the maximum delay for the train is 35 s, and the

maximum number of overloaded passengers is 40, both of which exceed the maximum adjustment values for the timetable

and the passenger load capacity. Therefore the affected trains need several stations to compensate for the delays, and a
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Table 3 

The system parameters for each station. 

Station Index j β i 
j 

γ i 
j 

Guogongzhuang 1 null 0 .3 

Fengtai Science Park 2 0 .01 0 .3 

Keyilu 3 0 .01 0 .3 

Fengtainanlu 4 0 .01 0 .3 

Fengtaidongdajie 5 0 .01 0 .3 

Qilizhuang 6 0 .02 0 .4 

Liuliqiao 7 0 .1 0 .5 

Liuliqiao East 8 0 .02 0 .3 

Beijing West Railway 9 0 .08 0 .8 

Militrary Museum 10 0 .1 0 .6 

Baiduizi 11 0 .02 0 .3 

Baishiqiao South 12 0 .2 0 .3 

National Library 13 1 null 

Table 4 

The initial conditions for the deviations of timetable and passenger load at each station. 

Station 1 2 3 4 5 6 7 8 9 10 11 12 

Timetable 0 0 0 0 20 20 35 20 20 0 0 0 

Passenger load 0 0 5 6 40 40 40 30 30 10 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

transient period is needed to reach the nominal timetable. In addition, without loss of generality, the weighted parame-

ters for the cost function (18) are set to be the same, where P = diag { 0 . 1 , 0 . 1 , . . . , 0 . 1 } , Q = diag { 0 . 1 , 0 , 0 . 1 , 0 . . . , 0 . 1 , 0 } , and

R = diag { 0 . 1 , 0 . 1 , . . . , 0 . 1 } , which means that the requirement for the reduced delays, the headway deviation, and the con-

trol force are the same. At stage k = 10 , we assume that the trains are affected by an uncertain disturbance w 10 , which is

given as w 10 = (0 , 0 , 0 , 0 , 10 , 10 , 28 , 10 , 10 , 0 , 0 , 0) . 

Under the above system parameters and initial conditions, at first we compare the proposed method to the case with

ū i 
j 
= 0 . For the initial delays of the trains, based on the proposed joint dynamic train regulation and passenger flow control

model (16) , and applying the proposed MPC Algorithm 3.1 to solve the optimization control problem (25) , we can calculate

the corresponding joint optimal dynamic train regulation and passenger flow control strategy. Let x̄ 1 and l̄ 1 be the train

delay and the passenger load error without train regulation, i.e., ū i 
j 
= 0 , respectively, and let x̄ 2 and l̄ 2 be the train delay

and the passenger load error of the train under the proposed joint optimal control strategy, respectively. The notations of x̄ 1

and x̄ 2 are only used to denote the train delays. Let u and p be the control forces of the train timetable and the passenger

load, respectively. The comparison results of the metro line under the case with the proposed joint optimal control strategy

and the case with ū i 
j 
= 0 from station 6 to station 9 are summarised in Table 5 . From Table 5 , we can observe that the train

delay x̄ 1 is propagated from one train to the next train at stations 6–9 without train regulation, which overloads the trains.

Meanwhile, the overloaded passenger flow leads to train delays. By comparison, under the proposed joint optimal control

strategy, the train delay x̄ 2 is effectively reduced and recovered to zero after two or three stages, and the transient period

for recovering from the delays is short, and meanwhile the passenger load error of the train is also quickly reduced and

converges to the nominal level after three stages. In addition, from Table 5 , we can find that under ū i 
j 
= 0 , the train delay

x̄ 1 lasts for about three to five stages for stations 6–9 and the corresponding values of the train delays are from 20 s to 35 s,

while the control force u for the train timetable only needs two stages for recovering from the delays at stations 6–9 and

the values of the control force u are less than the train delay value x̄ 1 , which shows that the joint optimal control strategy

improves the efficiency for the metro lines recovering from disturbed situations. 

Next, we compare the proposed joint optimal control policy with another train regulation method using dynamic pro-

gramming (DP) for which the optimal decision is obtained by an one-time optimization ( Lin and Sheu, 2010 ). The state

variable considered in Lin and Sheu, 2010 is only the departure time of the train, which does not consider the dynamics of

the passenger load of the trains, and the control variable is only the train running time and dwell time adjustment. The sim-

ulation results of the time deviations of the trains at stations 6–9 under the proposed method are plotted in Fig. 7 (a). From

Fig. 7 (a), we can observe that the train delays for all the stations are effectively reduced along the following stages. Spe-

cially, at stage 4, the train delays are reduced to zero and the trains are operating according to the nominal timetable, and

the full timetable recovery is achieved, which indicates the stability of the metro line system under the proposed method.

Moreover, at stage 10, when the trains are affected by the uncertain disturbance that further leads to delays of the trains,

the joint optimal control strategy can be calculated in real-time according to the current disturbance, and under the new

joint optimal control strategy, the delays of the trains are reduced along the stages, and are all stabilized to zero after a few

stages. In addition, the errors of passenger load at the different stages under the joint optimal control strategy are plotted

in Fig. 7 (b), which shows that the errors of passenger load are reduced along the stages and kept at zero at stage 4, which

ensures that the passenger load of the trains are kept at a reasonable level. Additionally, the headway deviations for the
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Table 5 

The comparison results of the metro line from station 6 to station 9. 

Stage 1 2 3 4 5 6 7 8 9 

x̄ 1 20 20 0 0 0 0 0 0 0 

x̄ 2 20 5 0 0 0 0 0 0 0 

Station 6 l̄ 1 40 39 −8 5 0 0 0 0 0 

l̄ 2 40 14 0 0 0 0 0 0 0 

u −15 0 0 0 0 0 0 0 0 

p −19 0 0 0 0 0 0 0 0 

x̄ 1 35 20 20 0 0 0 0 0 0 

x̄ 2 35 15 0 0 0 0 0 0 0 

Station 7 l̄ 1 40 28 35 −18 5 0 0 0 0 

l̄ 2 40 11 3 0 0 0 0 0 0 

u −5 −3 0 0 0 0 0 0 0 

p −15 −3 0 0 0 0 0 0 0 

x̄ 1 20 35 20 20 0 0 0 0 0 

x̄ 2 20 15 4 0 0 0 0 0 0 

Station 8 l̄ 1 30 44 23 35 −24 5 0 0 0 

l̄ 2 30 15 3 0 0 0 0 0 0 

u −20 −11 0 0 0 0 0 0 0 

p −22 −4 0 0 0 0 0 0 0 

x̄ 1 20 20 35 20 20 0 0 0 0 

x̄ 2 20 6 3 0 0 0 0 0 0 

Station 9 l̄ 1 30 28 53 9 32 −39 5 0 0 

l̄ 2 30 7 5 0 0 0 0 0 0 

u −14 −11 −3 0 0 0 0 0 0 

p −10 −7 0 0 0 0 0 0 0 

Fig. 7. The train delay and passenger load error at different stages under the MPC algorithm. 

 

 

 

 

 

 

 

 

trains under the joint optimal control at stations 6–9 are plotted in Fig. 8 , which shows that when the disturbance happens,

there are fluctuations for the headway deviations from the nominal headway, and then the headway deviations converge to

zero, i.e., the actual headway is kept at the nominal state and the headway regularity is improved. The headway regularity

of the metro line reduces the average waiting time for the passengers. The optimal control forces for the train timetable and

the passenger flow are plotted in Fig. 9 (a) and (b), respectively, which shows that all the control forces satisfy the control

constraints. In the end, according to the quadprog function from MATLAB optimization tool box, the optimization objective

value is calculated as J = 2080 . 4 . At each decision step, the computational time is only 2.71 s on a personal computer with

four CPUs and 4.00GB computer memory, which shows that the proposed MPC algorithm can be implemented for practical

metro lines in real-time. 
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Fig. 8. The headway deviations at different stages under the MPC algorithm. 

Fig. 9. The control forces at different stages. 

 

 

 

 

 

 

 

 

 

 

 

 

The dynamic programming form for the proposed optimal control problem (25) is described by the Bellman equa-

tion J ∗
k 

= min 

U k 

(E T 
k 

P E k + (E k − E k −1 ) 
T Q(E k − E k −1 ) + U 

T 
k 

RU k + J ∗
k +1 

(E k +1 )) and U 

∗
k 

= arg min 

U k 

(E T 
k 

P E k + (E k − E k −1 ) 
T Q(E k − E k −1 ) +

U 

T 
k 

RU k + J ∗
k +1 

(E k +1 )) , subject to the state and control constraints in (25) , where J k = 

∑ j f 
i = k (E T 

i 
P E i + (E i − E i −1 ) 

T Q(E i − E i −1 ) +
U 

T 
i 

RU i ) . By solving the joint train regulation and passenger flow control problem by the DP method, we can obtain the

optimization solution for the train regulation and passenger flow control. Under the DP method, the time deviations of the

trains and the errors of passenger loads at stations 6–9 are plotted in Fig. 10 (a) and (b), respectively. By comparing Figs. 7 (a)

and 10 (a), we can observe that the time delays are recovered from stage 7 under the DP policy, which is slower than the

proposed MPC algorithm from stage 4, which means that the dynamic renewal optimization characteristic of the MPC algo-

rithm is superior than the one time optimization of DP. Moreover, at stage 10 when the disturbance happens, the deviations

of the train timetable under the DP policy have a larger fluctuation from stage 10 to stage 15 than that under the proposed

MPC algorithm. Real-time control of the MPC algorithm has more robustness than the DP policy. In addition, according to

Figs. 7 (b) and 10 (b), we can see that the fluctuation of the error for the passenger load under the DP method is bigger
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Fig. 10. The train delays and passenger load errors at different stages under the DP policy. 

Table 6 

The changing system parameters of the passengers arrival rates. 

Index j 1 2 3 4 5 6 7 8 9 10 11 12 

k = 1 : 4 0 .4 0 .4 0 .4 0 .4 0 .4 0 .5 0 .6 0 .4 0 .7 0 .6 0 .4 0 .4 

k = 5 : 8 0 .5 0 .5 0 .5 0 .5 0 .5 0 .6 0 .7 0 .5 0 .8 0 .7 0 .5 0 .5 

k = 9 : 12 0 .6 0 .6 0 .6 0 .6 0 .6 0 .7 0 .8 0 .6 0 .9 0 .8 0 .6 0 .6 

k = 13 : 16 0 .5 0 .5 0 .5 0 .5 0 .5 0 .6 0 .7 0 .5 0 .8 0 .7 0 .5 0 .5 

k = 17 : 20 0 .4 0 .4 0 .4 0 .4 0 .4 0 .5 0 .6 0 .4 0 .7 0 .6 0 .4 0 .4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

than that under the MPC algorithm, which shows that the MPC algorithm can be effective to implement for controlling the

overloaded passenger flow. Furthermore, by calculation, the optimization objective value based on the DP policy is obtained

as J = 8269 . 7 , which is larger than that based on the MPC algorithm. In the end, it should be noted that the large prediction

errors will negatively affect the optimization performance. To avoid the large prediction errors, we usually chose a predic-

tion horizon M in a short time for the proposed MPC method. With the short prediction horizon, any forecast errors are

local and have limited impact since they will always be corrected by real-time data at the next interval. 

4.2. Scenario 2: the general case with real-time updated system parameters 

The system parameters for most actual metro lines change over time, such as the passenger arrival rates, so an actual

metro line system is a time-varying system, and the corresponding control strategy needs to be made in real-time according

to the updated information of the system parameters. However, the traditional dynamic programming method is hard to

deal with this general case with real-time updated system parameters. In scenario 2, we consider this more general case

and design the joint dynamic train regulation and passenger flow control strategy for metro lines with real-time updated

system parameters. In this case we assume that at stages k = 5 , k = 9 and k = 13 , the trains are affected by uncertain

disturbances, which are give as w 5 = (0 , 0 , 0 , 0 , 45 , 45 , 55 , 45 , 40 , 0 , 0 , 0) , w 9 = (0 , 0 , 0 , 0 , 25 , 25 , 25 , 25 , 0 , 0 , 0 , 0) and w 13 =
(0 , 0 , 0 , 0 , 10 , 10 , 0 , 25 , 10 , 0 , 0 , 0) . We next experiment with real-time updated parameters of the passenger arrival rate γ i 

j+1 
,

which is shown in Table 6 , where the passenger arrival rate has an increasing trend from stage k = 1 to k = 8 , and reaches

its maximum value from stage k = 9 to k = 12 , and then has a decreasing trend from stage k = 13 to k = 20 . Moreover, the

passenger arrival rate γ i 
j+1 

is plotted in Fig. 11 , which clearly shows the time-dependent passenger arrival flow. In addition,

the coefficient β i 
j+1 

is the same to that in Scenario 1. 

First, when the train regulation is not applied to the metro line system, the headway deviations for the trains at stations

6–9 is plotted in Fig. 12 (a), which shows that the disturbances lead to a large fluctuation of the headway deviations of the

trains from the nominal state, and negatively affects the waiting time of the passengers. The errors of passenger load are

plotted in Fig. 12 (b), which indicates that the passenger load also has large fluctuations from the nominal state. Because

of the multiple times of the disturbances to the train delays, the headway deviations of the trains at stations and the
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Fig. 11. The updated parameters of the passenger arrival rate. 

Fig. 12. The headway deviations and passenger load errors of the metro line without train regulation. 

 

 

 

 

 

 

 

 

 

 

errors of passenger load have multiple fluctuations. The fluctuations of the headway deviations and the passenger load error

negatively reduce the train operational efficiency and passenger service level. 

According to the real-time updated parameter information and solving the optimal control problem (25) using

Algorithm 3.1 , the simulation results of the headway deviations at stations 6–9 are plotted in Fig. 13 (a), and the errors

of the passenger load at the different stages are plotted in Fig. 13 (b). When a disturbance happens, the headway deviations

of the trains at the stations and the errors of the passenger load are effectively reduced under the proposed joint optimal

control strategy. For example, at stage 5, when the disturbance w 5 happens, it leads to the delays of the trains and fluctu-

ations of the passenger load. Under the optimal joint control strategy, the delays of the trains and the fluctuations of the

passenger load are effectively reduced and stabilized to about zero at stage 7. Similarly, when the disturbances w 9 and w 13 

happen, the delays of the trains and the fluctuations of the passenger load are all effectively reduced. In particular, when

the disturbances disappear after stage 15, the delays of the trains and the fluctuations of the passenger load are stabilized

at the stationary state (zero), i.e., the disturbed traffic is recovered to an acceptable situation. This shows the robustness and

stability of the proposed joint train regulation and passenger flow control strategy. 
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Fig. 13. The headway deviations and passenger load errors under the joint optimal control strategy. 

Fig. 14. The timetables of the metro line without train regulation (a) and with train regulation (b). 

 

 

 

 

 

 

 

 

Moreover, the timetables for the metro line without train regulation and with train regulation are plotted in Fig. 14 (a)

and (b), respectively, where the dotted lines represent the nominal timetable and the solid lines denote the actual timetable

under disturbances. By comparison, we can see when a disturbance happens, the delays are propagated from one station to

the next one under the case without train regulation, while under the optimal joint control strategy, the delays of the trains

are effectively reduced and recovered from the disturbances to the nominal timetable in a short amount of time. 

4.3. Scenario 3: different weights for headway regularity and commercial speed 

In scenario 3, we investigate the effect of the different weights in the cost function (18) for improving the headway

regularity and commercial speed. For the cost function (18) , the first term denotes the errors for the timetable, and the

minimization of the first term means to improve the commercial speed of the metro line, while the second term is related

to the headway deviation of the trains, and the minimization of the second term means to improve the headway regularity
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Table 7 

The minimization timetable deviations and headway deviations for a set of different weights. 

Case 1 Case 2 Case 3 Case 4 Case 5 

( b, q ) (0 .01, 0.99) (0 .04, 0.96) (0 .08, 0.92) (0 .10, 0.90) (0 .50, 0.50) 

Station 5 27 .9 24 .3 23 .3 23 .1 22 .9 

Station 6 40 .7 33 .2 30 .1 29 .2 26 .6 

Timetable Station 7 96 .5 92 .9 92 .6 92 .2 92 .1 

Deviations Station 8 66 .6 59 .3 58 .2 57 .8 57 .4 

Station 9 56 .4 45 .4 43 .1 42 .6 40 .9 

Station 5 16 .9 21 .2 22 .6 23 .3 24 .9 

Station 6 20 .9 21 .0 22 .3 23 .5 26 .1 

Headway Station 7 61 .8 62 .8 63 .8 64 .0 64 .2 

Deviations Station 8 33 .6 36 .7 37 .7 38 .1 39 .6 

Station 9 14 .2 16 .8 17 .8 18 .3 25 .2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the metro line, irrespective of the nominal timetable. So by adjusting the different weights in the cost function, we can

realise a tradeoff between the headway regularity and commercial speed. In this scenario, the initial state for the deviations

of the actual departure time is given as (0, 0, 0, 0, 20, 20, 60, 20, 20, 0, 0, 0), which means that at the initial stage, the

train at station 7 is delayed by 60 s. Meanwhile, the initial state of the error passenger load is given as (0, 0, 5, 6, 40, 40,

40, 30, 30, 10, 0, 0). In addition, we assume that at stages k = 5 and k = 9 , the trains are affected by uncertain disturbances,

which are give as w 5 = (0 , 0 , 0 , 0 , 10 , 15 , 25 , 10 , 10 , 0 , 0 , 0) and w 9 = (0 , 0 , 0 , 0 , 5 , 5 , 40 , 10 , 10 , 0 , 0 , 0) . The system parameters

and the constraints conditions are the same to those of Scenario 1. 

To investigate the effects of the different weights in the cost function for improving the headway regularity and com-

mercial speed, we consider five cases of the metro line system with different weights in the cost function. The weighted

parameters P and Q for the cost function (18) are set to be P = diag { b, b, . . . , b} and Q = diag { q, 0 , q, 0 . . . , q, 0 } . Then the

five cases are given in Table 7 , where the weights for the timetable deviations are increasing from Case 1 to Case 5, and

meanwhile the weights for the headway deviations are decreasing from Case 1 to Case 5. Define the sum of the timetable

deviations at each station j for all the trains as ( 
∑ 

i e 
i 
j 
e i 

j 
) 

1 
2 and the sum of headway deviations at each station j for all the

trains as ( 
∑ 

i (e i 
j 
− e i −1 

j 
)(e i 

j 
− e i −1 

j 
)) 

1 
2 . Then the minimization timetable deviations and headway deviations for the different

weights under Cases 1–5 for stations 5–9 are calculated in Table 7 . From Table 7 , we can observe that at station 7, the

timetable deviations and headway deviations are both largest since the initial delay at station 7 is the biggest. With in-

creasing weights for the timetable deviations, the timetable deviations are reduced from Case 1 to Case 5 for the trains at

stations 5–9, which means that the increase of the weights for the timetable deviations improves the commercial speed

of the metro line under delays. With decreasing weights for the headway deviations, the headway deviations are increased

from Case 1 to Case 5 for the trains at stations 5–9, which indicates that the decreasing of the weights for the headway

deviations reduces the headway regularity of the metro line system. Therefore, according to the results in Table 7 , we can

choose a proper set of weights of the cost function (18) for the timetable and headway deviations to realize a trade-off

between the headway regularity and commercial speed for metro lines. 

5. Conclusion 

In this paper, the joint optimal dynamic train regulation and passenger flow control strategy was investigated to improve

the headway regularity and commercial speed for metro lines. A coupled dynamic model for the evolution of the depar-

ture time and the passenger load of each train travelling on the metro line was constructed. By considering the headway

regularity and commercial speed in the cost function, an optimal control problem for the joint dynamic train regulation

and passenger flow control strategy was developed, which was solved by applying the model predictive control (MPC) algo-

rithm, under which an optimal control law for the joint dynamic train regulation and passenger flow control strategy can

be numerically calculated by efficiently solving a set of quadratic programming problems. 

The proposed method provides a real-time train regulation and passenger flow control strategy in the form of a closed

loop system, which can be effectively and quickly implemented for actual metro lines in real-time. Numerical examples show

that, under the proposed joint optimal control strategy, the train delays, the passenger load errors and the train headway

deviations are significantly reduced, and the train operational efficiency and passenger service level are improved. 

It is worthy to mention that the proposed method is applicable to train delays in a certain range, and the research

scope is a full timetable recovery from the train delays. For significantly larger delays, a new reference timetable should

be designed, which is related to another rescheduling problem. Additionally, the joint optimal dynamic train regulation and

passenger flow control strategy that considers the energy consumption is also an interesting issue and should be investigated

in the future. 
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Appendix A. Derivation of (11) 

The first equation of (10) can be rewritten as 

t i j+1 = 

1 

1 − αγ i 
j+1 

t i j −
αγ i 

j+1 

1 − αγ i 
j+1 

t i −1 
j+1 

+ 

αβ i 
j+1 

1 − αγ i 
j+1 

l i j + 

α

1 − αγ i 
j+1 

p i j+1 + 

1 

1 − αγ i 
j+1 

D j+1 

+ 

1 

1 − αγ i 
j+1 

R 

i 
j + 

1 

1 − αγ i 
j+1 

u 

i 
j + 

1 

1 − αγ i 
j+1 

t i j w 

i 
j . (32)

Then, by substituting (32) into the second equation of (10) , we can get that the second equation of (10) is equivalent

to 

l i j+1 = (1 − β i 
j+1 ) l 

i 
j + 

γ i 
j+1 

1 − αγ i 
j+1 

t i j −
( 

αγ i 
j+1 

2 

1 − αγ i 
j+1 

+ γ i 
j+1 

) 

t i −1 
j+1 

+ 

αβ i 
j+1 

γ i 
j+1 

1 − αγ i 
j+1 

l i j + 

αγ i 
j+1 

1 − αγ i 
j+1 

p i j+1 

+ 

γ i 
j+1 

1 − αγ i 
j+1 

D j+1 + 

γ i 
j+1 

1 − αγ i 
j+1 

R 

i 
j + 

γ i 
j+1 

1 − αγ i 
j+1 

u 

i 
j + 

γ i 
j+1 

1 − αγ i 
j+1 

t i j w 

i 
j + p i j+1 , (33)

which can be further rewritten as 

l i j+1 = (1 − β i 
j+1 ) l 

i 
j + 

γ i 
j+1 

1 − αγ i 
j+1 

t i j −
(

αγ i 
j+1 

1 − αγ i 
j+1 

)
t i −1 

j+1 
+ 

αβ i 
j+1 

γ i 
j+1 

1 − αγ i 
j+1 

l i j + 

αγ i 
j+1 

1 − αγ i 
j+1 

p i j+1 

+ 

γ i 
j+1 

1 − αγ i 
j+1 

D j+1 + 

γ i 
j+1 

1 − αγ i 
j+1 

R 

i 
j + 

γ i 
j+1 

1 − αγ i 
j+1 

u 

i 
j + 

γ i 
j+1 

1 − αγ i 
j+1 

t i j w 

i 
j + p i j+1 . (34)

For x i 
j 
= [ t i 

j 
, l i 

j 
] T and ū i 

j 
= [ u i 

j 
, p i 

j+1 
] T , by collecting terms for (32) and (34) , it can be easily obtained that 

x i j+1 = A 

i 
j x 

i 
j + B 

i 
j x 

i −1 
j+1 

+ C i j ̄u 

i 
j + G 

i 
j (D j+1 + R 

i 
j + w 

i 
j ) . 

where A 

i 
j 
= 

⎡ 

⎢ ⎣ 

1 

1 −αγ i 
j+1 

αβ i 
j+1 

1 −αγ i 
j+1 

γ i 
j+1 

1 −αγ i 
j+1 

1 − β i 
j+1 

+ 

αγ i 
j+1 

β i 
j+1 

1 −αγ i 
j+1 

⎤ 

⎥ ⎦ 

, B i 
j 
= 

⎡ 

⎢ ⎣ 

−αγ i 
j+1 

1 −αγ i 
j+1 

0 

−γ i 
j+1 

1 −αγ i 
j+1 

0 

⎤ 

⎥ ⎦ 

, C i 
j 
= 

⎡ 

⎣ 

1 

1 −αγ i 
j+1 

α
1 −αγ i 

j+1 

γ i 
j+1 

1 −αγ i 
j+1 

1 

1 −αγ i 
j+1 

⎤ 

⎦ , G 

i 
j 
= 

⎡ 

⎣ 

1 

1 −αγ i 
j+1 

γ i 
j+1 

1 −αγ i 
j+1 

⎤ 

⎦ . 

Appendix B. Derivation of (14) 

Subtracting (12) from the first equation of (10) gives that 

(t i j+1 − T i j+1 ) = (t i j − T i j+1 ) + α(γ i 
j+1 ((t i j+1 − T i j+1 ) − (t i −1 

j+1 
− T i −1 

j+1 
)) + β i 

j+1 (l i j − L i j ) + p i j+1 ) + u 

i 
j + w 

i 
j . (35)

Similarly, by subtracting (13) from the second equation of (10) , one can get that 

(l i j+1 − L i j+1 ) = (l i j − L i j ) + γ i 
j+1 ((t i j+1 − T i j+1 ) − (t i −1 

j+1 
− T i −1 

j+1 
)) − β i 

j+1 (l i j − L i j ) + p i j+1 . (36)

Then for e i 
j 
= [ t i 

j 
− T i 

j 
, l i 

j 
− L i 

j 
] T , similar to derivation process of (11) , by collecting terms for (35) and (36) , one can obtain

that 

e i j+1 = A 

i 
j e 

i 
j + B 

i 
j e 

i −1 
j+1 

+ C i j ̄u 

i 
j + G 

i 
j w 

i 
j . 

where A 

i 
j 
, B i 

j 
, C i 

j 
, and G 

i 
j 

take the same forms in (11) . 
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Appendix C. The definitions of matrices 

Ā k = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

B k 
0 

0 0 0 · · ·
A 

k −1 
1 

B k −1 
1 

0 0 · · ·
· · · · · · · · ·

0 · · · 0 A 

k −N+1 
N−1 

B k −N+1 
N−1 

⎤ 

⎥ ⎥ ⎥ ⎦ 

2 N×2 N 

. 

B̄ k = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

C k 
0 

0 0 · · ·
0 C k −1 

1 
0 · · ·

· · · · · · · · ·
0 · · · · · · C k −N+1 

N−1 

⎤ 

⎥ ⎥ ⎥ ⎦ 

2 N×2 N 

. 

Ḡ k = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

G 

k 
0 

0 0 · · ·
0 G 

k −1 
1 

0 · · ·
· · · · · · · · ·

0 · · · · · · G 

k −N+1 
N−1 

⎤ 

⎥ ⎥ ⎥ ⎦ 

2 N×N 

. 

F = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

Ā k 

Ā k +1 ̄A k 

· · ·
Ā k + M−1 ̄A k + M−2 . . . Ā k 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. 

� = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

B̄ k 0 0 · · ·
Ā k +1 ̄B k B̄ k +1 0 · · ·

· · · · · · · · ·
Ā k +1 ̄A k +2 . . . Ā k + M−1 ̄B k Ā k +2 . . . Ā k + M−1 ̄B k +1 · · · B̄ k + M−1 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. 

Appendix D. Derivation of (28) from (26) 

For E = [ E T 
k +1 

, E T 
k +2 

, . . . , E T 
k + M 

] T and U = [ U 

T 
k 
, U 

T 
k +1 

, . . . , U 

T 
k + M−1 

] T , the objective function for the optimization problem

(26) can be rewritten as 

E T P̄ E + E T Q̄ E + U 

T R̄ U (37) 

where P̄ , Q̄ and R̄ can be directly obtained from the objective function of (26) . 

Then, by substituting E = F E k + �U in the objective function (37) , one can get that 

E T P̄ E + E T Q̄ E + U 

T R̄ U 

= (F E k + �U) T P̄ (F E k + �U) + (F E k + �U) T Q̄ (F E k + �U) + U 

T R̄ U 

= U 

T (�T P̄ � + �T Q̄ � + R̄ ) U + 2 U 

T (�T P̄ F E k + �T Q̄ F E k ) + F T P̄ F E 2 k + F T Q̄ F E 2 k , (38) 

which equals to the objective function of (28) . 

In addition, recalling that E = [ E T 
k +1 

, E T 
k +2 

, . . . , E T 
k + M 

] T , the constraint H 1 (E k + j − E k + j+1 ) ≤ (H − t min ) I N×1 , j = 0 , 1 , . . . , M −
1 in (26) can be rewritten to matrix form as 

H 3 H 4 E + H 3 H 5 E k ≤ (H − t min ) I MN×1 , (39) 

where H 3 is a matrix of MN × 2 MN dimension, in which for each row i of the matrix, the element H 3 (i, 2 i − 1) = 1 , and all

other elements for this row equal to zero, 

H 4 = 

⎡ 

⎢ ⎢ ⎣ 

−I 2 N 0 2 N 0 2 N 0 2 N · · ·
I 2 N −I 2 N 0 2 N 0 2 N · · ·

· · · · · · · · ·
0 2 N · · · 0 2 N I 2 N −I 2 N 

⎤ 

⎥ ⎥ ⎦ 

2 M N×2 M N 

, and H 5 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

I 2 N 

0 2 N 

. 

. 

. 

0 2 N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

2 MN×2 N 

. 

By substituting E = F E k + �U into the constraint (39) , one can obtain that constraint (39) is equivalent to 

H 3 H 4 �U ≤ (H − t min ) I MN×1 − H 3 H 4 F E k − H 3 H 5 E k , (40) 

which corresponds to the first constraint in (28) . 
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Similarly, one can obtain that the constraints H 2 E k + j+1 ≤ L k + j+1 , U k + j ≤ U max , and −U k + j ≤ −U min j = 0 , 1 , . . . , M − 1 in

(26) are equivalent to H 6 �U ≤ L − H 6 F E k , I 2 MN U ≤ Ū max , and −I 2 MN U ≤ −Ū min , respectively, where H 6 is a matrix of MN

× 2 MN dimension, in which for each row i of the matrix, the element H 6 (i, 2 i ) = 1 , and all other elements for this row

equal to zero, L = [ L T 
k +1 

, L T 
k +2 

, . . . , L T 
k + M 

] T , Ū max = [ U 

T 
max , U 

T 
max , . . . , U 

T 
max ] 

T 
2 MN×1 , and Ū min = [ U 

T 
min 

, U 

T 
min 

, . . . , U 

T 
min 

] T 2 MN×1 , which

corresponds to the other constraints in (28) . 
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