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a b s t r a c t 

In the daily operation of metro systems, the train scheduling problem aims to find a set 

of space-time paths for multiple trains that determine their departure and arrival times at 

metro stations, while train operations are in charge of selecting the best operational speed 

to satisfy the punctuality and operation costs. Different from the most existing researches 

that treat these two problems separately, this paper proposes an integrated approach for 

the train scheduling problem on a bi-direction urban metro line in order to minimize the 

operational costs (i.e., energy consumption) and passenger waiting time. More specifically, 

we simultaneously consider (1) the train operational velocity choices that correspond to 

the energy consumption of trains on each travelling arc, and (2) the dynamic passenger 

demands at each station for the calculation of total passenger waiting time in the planning 

horizon. By employing a space-time network representation in the formulations, this com- 

plex train scheduling and control problem with dynamic passenger demands is rigorously 

formulated into two optimization models with linear forms. The first model is an integer 

programming model that jointly minimizes train traction energy consumption and pas- 

senger waiting time. The second model, which is formulated as a mixed-integer program- 

ming model, further considers the utilization of regenerative braking energy on the basis 

of the first model. Due to the computational complexity of these two models, especially 

for large-scale real-world instances, we develop a Lagrangian relaxation (LR)-based heuris- 

tic algorithm that decomposes the primal problem into two sets of subproblems and thus 

enables to find a good solution in short computational time. Finally, two sets of numer- 

ical experiments, involving a relatively small-scale case and a real-world instance based 

on the operation data of Beijing metro are implemented to verify the effectiveness of the 

proposed approaches. 

© 2017 Elsevier Ltd. All rights reserved. 

 

1. Introduction 

With the increasing social concerns on carbon emission and global warming problems in big cities (e.g., Tokyo,

Beijing, Shanghai, New York), sustainable and environmental friendly transportation modes, involving public transport 
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( Daganzo, 2010 ) and electric vehicles ( Li et al., 2016 ), are paid more and more attention in recent years. As an indispensable

part of public transport, urban metro traffic is regarded as an environmental friendly transportation mode with high carry-

ing capacity and low carbon emissions ( Yang et al., 2016 ). For example, Beijing metro owns 18 lines with a total length of

527 km, which can carry as many as 10 million passengers to their destinations within a single day. Meanwhile, the carbon

emission for transporting one passenger per kilometer by the metro line is only about 10% compared with that of a single

occupancy car ( Kennedy, 2002 ), which enables to release the environmental pressure for carbon emissions and improve the

social benefits through the development of urban metro systems. 

In general, the daily operations of a metro system are formed on the basis of an extensive daylong planning process,

which typically involves train scheduling, rolling stock plan and crew scheduling. In particular, the metro train schedul-

ing process aims to find a set of feasible space-time paths for all the in-service trains to determine their departure

and arrival times at the stations of a metro corridor. As indicated in Cordeau et al. (1998) , Zhou and Zhong (2007) and

Wang et al. (2014) , the train schedule has a direct affect on the service quality and operational costs of a metro system.

Specifically, the service quality is commonly associated with the train travel time and passenger waiting time, while the

operational costs usually refer to the total energy consumption for the movement of trains. In essence, the service level

and operational costs are two objectives that may conflict with each other in the metro train scheduling process. For ex-

ample, the high train departure frequency and short travel time can reduce passenger waiting and travelling time, but will

inevitably increase the energy consumption for train operations. 

Nevertheless, the current researches that simultaneously consider the above two objectives through a microscopic view

are very few, which is partially due to the following two reasons. (1) On one hand, the calculation of passenger waiting

time (or travelling time) in a metro line is directly subjected to the complex passenger flow characteristics through a day-

long planning horizon. Compared with mainline railways or high-speed railways, in which most passengers make their trip

plans according to the given timetable, passengers in a metro system usually do not care about the train timetable before

their trips, leading to the evident dynamic (or time-variant) features of passenger demands ( Freyss et al., 2013; Yang et al.,

2015a ). In this sense, a non-periodic timetable, i.e., a timetable with irregular headway between adjacent trains, can be

more appropriate to handle the dynamics of passenger demands. However, a non-periodic timetable is usually much more

difficult to obtain due to the consideration of time-variant demands, resulting in the nonlinearity of the mathematical for-

mulations (e.g., Barrena et al., 2014b; Niu et al., 2015b ); (2) on the other hand, the optimization of energy consumption for

train operations is inherently a complex nonlinear problem subject to many external factors, e.g., travel time in each seg-

ment, parameters of vehicle dynamic model and rail tracks (e.g., Howlett and Pudney, 1995; Howlett et al., 2009; Ye and Liu,

2016; Yin et al., 2014; 2016a ). Additionally, if the regenerative braking energy, which is an effective approach to reduce the

total energy consumption by converting train braking energy for the utilization of accelerating trains, is further considered,

the metro train scheduling problem will become a highly nonlinear optimization model that is much more challenging to

handle. 

To address these issues, this paper aims to develop a unified metro train scheduling framework that simultaneously con-

siders the dynamic passenger demands, train traction energy consumption and the utilization of regenerative braking energy.

In particular, by using a space-time network analysis, we formulate the problem into two (mixed) integer linear program-

ming models which aim to minimize the total passenger waiting time and energy consumption (i.e., the difference between

the train traction energy consumption and regenerative energy). To solve the models more efficiently, we also develop an

efficient Lagrangian relaxation-based heuristic algorithm that can obtain a good solution in an acceptable computational

time. 

1.1. Literature review 

The train scheduling problem, which aims to obtain a timetable that is to be carried out by a scale of given fleet, is a very

active research field in railway operations (e.g., Cacchiani and Toth, 2012; Cacchiani et al., 2016; Wong et al., 2008; Xu et al.,

2015; Kroon et al., 2014; Niu and Zhou, 2013; Niu et al., 2015b; Barrena et al., 2014b; 2014a ). In general, the current solution

methodologies for the rail train scheduling problem can be divided into three categories: (1) optimization approaches which

use the commercial optimization softwares (e.g., CPLEX, GAMS ( Yang et al., 2014 )) or accurate algorithms (e.g., branch and

bound algorithms ( Corman et al., 2012; D’Ariano et al., 2007 )), (2) heuristic algorithms (e.g., Lagrangian relaxation ( Cacchiani

et al., 2016; Meng and Zhou, 2014; Zhou and Zhong, 2007 )) and (3) simulation methods (e.g., Dorfman and Medanic, 2004;

Mu and Dessouky, 2013; Xu et al., 2015 ). In particular, these researches in rail train scheduling problem mainly focus on the

minimization of three types of objectives, involving train delay time ( Higgins et al., 1996; Cacchiani et al., 2014; Corman and

Quaglietta, 2014; Corman et al., 2010 ), total travel time (e.g., Zhou and Zhong, 20 05; 20 07 ) and fuel consumption costs (e.g.,

Yang et al., 2015b ). For example, Higgins et al. (1996) developed a non-linear integer programming model for the real-time

scheduling of trains on a single line corridor. The objective was to minimize the total delay time in case of train conflicts

and the operational costs. For the minimization of total travel time, Zhou and Zhong (2007) formulated this problem into

a job shop scheduling model, which was solved efficiently by a Lagrangian relaxation combined with branch and bound

algorithms. 

In a passenger railway, namely a metro system or urban rail transit, it is practically desirable to design a passenger-

centric timetable to highlight the convenience, reliability and reduction of passenger waiting times ( Niu et al., 2015b ). In

general, the researches of passenger-oriented timetable design can be divided into two categories. The first kind of re-
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searches focus on the design of a periodic schedule throughout the planning horizon ( Carey and Crawford, 2007; Cordone

and Redaelli, 2011; Li and Lo, 2014 ), by which the train schedules are repeated in every time interval (e.g., 1 h). The pe-

riodic timetable model is formulated on the basis of a periodic event scheduling problem, and it can yield the minimum

passenger waiting times in case of constant demands ( Barrena et al., 2014b ). To be more realistic, recent studies begin to

focus on a non-periodic timetable that explicitly considers the time-dependent origin-destination (OD) passenger demands

to reduce their waiting times and travelling times, e.g., Sun et al. (2014) , Niu and Zhou (2013) , Niu et al. (2015b ), Barrena et al.

(2014b ), Wang et al. (2014) and Yin et al. (2016b ). For example, Niu and Zhou (2013) derived a demand-oriented timetabling

approach and formulated a nonlinear 0–1 integer model to minimize the total number of waiting passengers and weighted

remaining passengers. An effective passenger loading time window was introduced to deal with the time-dependent waiting

time and the number of passengers who fail to board the first coming train due to train capacity constraints. The model

was solved by a genetic algorithm (GA) through a special binary coding method. For the non-periodic timetable design with

time-variant passenger demands in a metro corridor, Barrena et al. (2014b ) developed two non-linear mathematical formu-

lations to minimize the passenger waiting time at the stations. Due to the computational intensity of these two models,

they proposed a fast adaptive large neighborhood search (ALNS) algorithm to obtain a good solution. In addition, Niu et al.

(2015b ) further considered the skip-stop patterns in metro train scheduling problem with time-dependent OD demands, and

the problem was then transformed into an algorithmically tractable non-linear mixed integer programming model. 

Due to the rising concerns on carbon emission and environmental problems, the energy efficiency of urban metro sys-

tems is becoming one of the active research areas in order to pursue a convenient, efficient and environmental friendly

transport mode for citizens travelling. Typically, the energy consumption for train operations accounts for nearly a half of

the total energy usage in a metro system, and thus it is very promising to effectively reduce the energy consumption by

the optimization of train schedules (e.g., Yang et al., 2015b; 2015c; Wang et al., 2015 ) and operation strategies (e.g., Albrecht

et al., 2016; Howlett and Pudney, 1995; Liu and Golovitcher, 2003 ). More recently, the technology of using regenerative

energy, which can be generated by the electric motor when a train is braking and then fed back to the contact lines, has

been well applied to some metro systems. Therefore, the main challenge is to coordinate the train operations through the

adjustment of train timetables and driving strategies such that the total energy consumption (i.e., the difference between

the total traction energy and regenerative energy) is minimized. For example, Ramos et al. (2007) considered a particular

case of metro train timetabling during off-peak hours, which aims to maximize the overlapping time between speed-up

and slow-down trains in the same power supply substation, such that the regenerative energy can be utilized more effec-

tively. Pena-Alcaraz et al. (2012) developed a mixed-integer nonlinear optimization model to synchronize the braking trains

with the accelerating trains to better utilize the regenerative energy. Nasri et al. (2010) proposed a simulation-based train

timetable optimization approach in order to completely utilize the regenerative energy from braking trains. Using a GA

method, they studied the influence of train headway on the utilization of regenerative energy. Li and Lo (2014) formulated

an approach to reduce the total energy consumption by optimizing the timetable and driving strategies (i.e., accelerating,

coasting and braking points) by GA. Yang et al. (2015c ) utilized the real-world train speed profiles and derived a nonlinear

integer model under the assumption of fixed cycle time and headway between adjacent trains. 

1.2. Focus of this study 

To the best of our knowledge, the majority of existing literature devotes to one of objectives, i.e., energy-efficiency or

service quality in the design of passenger-oriented metro train timetables. For comparative convenience, we list the detailed

characteristics of some closely related references in Table 1 , including decision variables, objectives, formulated models and

solution algorithms. For example, Niu and Zhou (2013) , Niu et al. (2015b ) and Barrena et al. (2014b ) addressed the time-

variant OD passenger demands in a metro corridor, and aimed to improve the objectives that are only related to the service

quality (passenger waiting time, number of waiting passengers, etc). Meanwhile, the other researches (e.g., Li and Lo, 2014;

Yang et al., 2015c and Yang et al., 2015b ) focus on the minimization of energy consumption for metro train scheduling, in

which the passenger demand characteristics are simplified or neglected. More importantly, most of these formulations are

nonlinear models that might not be easily handled by the commercial optimization softwares or variants of some classical

algorithms. With these concerns, we are particularly interested in developing a unified metro train scheduling framework

that synchronously considers these two aspects in order to jointly improve the service quality and operational economy.

Specifically, this paper aims to make the following contributions to the study of metro train scheduling problems. 

(1) By using a space-time network representation, we transform the metro train scheduling problem into a coordinated

routing problem through defining a set of available train speed profiles with different train driving strategies. This method

enables to handle both the train traction energy consumption and regenerative energy by linear formulas. Based on the

dynamic OD passenger demands, we rigorously formulate two linear programming models. The first model is an integer

optimization model, which aims to jointly minimize the train traction energy consumption and passenger waiting time at

the stations in a bi-direction metro corridor. The second model, which is formulated as a mixed-integer linear programming

(MILP) model, further considers the utilization of regenerative energy by braking trains in the same power supply substation.

Compared with existing researches, the proposed approaches synchronously consider the dynamic passenger characteristics, 

train traction energy consumption and utilization of regenerative energy in a metro train scheduling problem. Since these

two models are formulated as an integer linear programming and MILP, respectively, they can be expected to be solved with
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Table 1 

Recent publications on train scheduling problems in comparison with our work. 

Publication Decision variable Objective Model Solution algorithm 

Barrena et al. (2014b ) Train timetable Passenger waiting time Nonlinear Adaptive large neighborhood 

search 

Barrena et al. (2014a ) Train timetable Passenger waiting time Linear Branch and bound 

Canca et al. (2014) Train timetable Passenger waiting time Nonlinear GAMS software 

Niu and Zhou (2013) Train timetable Waiting passengers and 

remaining passengers 

Nonlinear GA 

Niu et al. (2015b ) Train timetable Passenger waiting time Nonlinear integer 

programming 

GAMS software 

Ramos et al. (2007) Train timetable Overlapping time Linear GAMS software 

Pena-Alcaraz et al. (2012) Train timetable Overlapping time Nonlinear GAMS software 

Nasri et al. (2010) Train timetable Utilized regenerative energy Simulation-based GA 

Li and Lo (2014) Timetable and speed 

profile 

Net energy consumption Nonlinear GA 

Yang et al. (2015c ) Train dwelling time Net energy consumption Nonlinear GA 

Wang et al. (2014) Train timetable Traction energy 

consumption and 

passenger waiting time 

Nonlinear GA and simulation 

This paper Train timetable and 

speed profile 

Net energy consumption 

and passenger waiting 

time 

0–1 linear and MILP 

models 

CPLEX and Lagrangian-based 

heuristic algorithm 

Fig. 1. Bi-directional urban rail line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the aid of commercial optimization softwares if the problem scale is not too large, and more importantly, they can offer a

good benchmark for the researches afterwards in developing heuristic solution algorithms. 

(2) Since the complexity of large-scale models makes it difficult to use the integer programming (IP) solvers to search for

the optimal train schedules within an acceptable computational time, this research especially designs an efficient Lagrangian

relaxation (LR)-based heuristic algorithm to find a good solution as soon as possible. Specifically, we firstly dualize the pas-

senger boarding constraints into the objective function by introducing the corresponding Lagrangian multipliers. Then, the

relaxed model is decomposed into two sets of tractable sub-problems. One sub-problem corresponds to a coordinated rout-

ing optimization problem in the given space-time network, and the other is essentially a cutting stock problem, which are

much easier to be handled. Additionally, we further design a heuristic algorithm to adjust the solution of relaxed models

into a feasible solution of the primal problem in order to update the upper bounds. Finally, two sets of numerical experi-

ments, which are respectively based on a simple metro corridor and a real-world instance in Beijing metro, are implemented

to illustrate the applications and performance of the proposed approaches. 

The rest of this paper is organized as follows. In Section 2 , we give a detailed description for the train scheduling prob-

lem in a bi-direction metro corridor. In Section 3 , two mathematical models are formulated to generate the train scheduling

plan and speed profiles in each segment. Then, we propose the LR-based heuristic algorithm to solve the developed mod-

els in Section 4 . In Section 5 , we design two case studies, i.e., an illustrative small case and a large-scale case based on

the real-world operation data of Beijing metro, to demonstrate the effectiveness of the proposed approaches. Finally, some

conclusions and further studies are presented in Section 6 . 

2. Problem description 

This paper considers the train scheduling problem for a bi-direction urban rail line with 2 I stations. As shown in Fig. 1 ,

the stations are numbered as 1, 2, ���, 2 I . The start terminal and return terminal are indexed by station 1 and station I ,

respectively. Let I = { 1 , 2 , · · · , 2 I} be the set of stations. A group of service trains, denoted by K = { 1 , 2 , · · · , K} , begin their

journeys at station 1 in up-direction until reaching station I . After a given turn-around time at the turnaround terminal,

they go back to the origin station (i.e., station 2 I ) and then wait for the next cycle. 
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Fig. 2. Space-time network for representation of train trajectory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then, the purpose of metro train scheduling problem in this paper is to find an optimal schedule for the considered

trains in the planning time horizon [ t 0 , t end ], such that a trade-off between the operational costs and passenger waiting time

can be optimized. One practical issue for the metro train scheduling is the consideration of dynamic passenger demands.

For example, the passenger demands may vary in different time periods throughout a single-day time horizon, e.g., high

demands in peak hours and low demands in off-peak hours. Meanwhile, since the amount of green house emissions is

directly related to the energy consumption of trains, it is suggested that there are opportunities for reducing CO 2 emissions

with proper train scheduling strategies to account for wider environmental and social impacts (e.g., Bektas and Laporte,

2011; Zhou et al., 2017 ). Therefore, it is practically significant to obtain a train timetable in order to realize a good balance

between these two aspects. 
• Space-time network representation 

In what follows, we first introduce the space-time networks for representation of train scheduling problem, and then we

develop two linear formulations for solving this problem with the consideration of both dynamic passenger demands and

train energy consumption. Space-time networks, which aim to integrate physical transportation networks with vehicle time-

dependent movements/trajectories, are effective representation methods for capturing and analyzing spatial and temporal 

characteristics of dynamic traffic systems (e.g., see Kennington and Nicholson, 2010; Li et al., 2015; Tong et al., 2015; Shi

et al., 2014; Boland et al., 2015; Yang et al., 2014; Mahmoudi and Zhou, 2016; Liu and Zhou, 2016; Lu et al., 2016; Yang and

Zhou, 2017 ). For instance, Yang and Zhou (2014) constructed a space-time network to capture spatial and temporal travel

time correlations for finding a priori least expected time path in a time-dependent and stochastic network. Kennington and

Nicholson (2010) proposed a novel strategy through a tight linear programming (LP) relaxation for space-time fixed-charge

network flow problems to determine the artificial arc capacities. By using a space-time network, Tong et al. (2015) formu-

lated the urban network design problem into a linear integer programming model that maximizes the system-wide trans-

portation accessibility. More recently, Mahmoudi and Zhou (2016) solved the vehicle routing problem with pickup and de-

livery with time windows effectively based on a state-space-time network and dynamic programming algorithm embedded

into a Lagrangian relaxation framework. Since a train timetable in essence determines space-time positions of in-service

trains, we can explicitly express the trajectories of trains in a space-time network. 

To construct a space-time network, the considered time horizon [ t 0 , t end ] is first divided into a series of intervals with the

same time length δ, denoted by a set of timestamps T = { t 0 , t 0 + δ, t 0 + 2 δ, · · · , t 0 + Mδ} , at which some important opera-

tions, e.g., arriving at stations and departing from stations, are allowable to carry out (see Fig. 2 ). Theoretically, a space-time

network is the combination of the physical network and time horizon. As shown in Fig. 2 , each node in the space-time
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(a) Velocity-distance-time profiles (b) Velocity-distance profiles

Fig. 3. An illustration of train operation levels and the corresponding velocity profiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

network denotes the spatial and temporal state of a physical node, and a space-time arc essentially denotes the entering

and departure times of a physical link for a given train. Once the time horizon is pre-given, we can easily deduce the set

of space-time nodes in the entire space-time network. However, in determining the space-time arcs, we need to specify all

the velocity profiles on each travel link, which correspond to different link travel times and space-time arcs. For clarity, we

next introduce the concept of velocity profiles considered in this study. 
• Definition of velocity profiles on each travel link 

In many previous studies (e.g., Barrena et al., 2014b; Yang et al., 2015c; 2014; Niu and Zhou, 2013 ) for train scheduling,

the train travelling velocity in each segment is usually considered as a predetermined value. Nevertheless, in practical oper-

ations, the velocity and travel time of a metro train on travel links are always not constant, but can be adjusted according

to the operation level of on-board train control systems. In general, the operation levels are discrete speed levels (e.g., level

1 to level 5, see Fig. 3 b) and preseted by metro signal suppliers. The aim is to provide more choices for metro dispatchers

to improve the flexibility and efficiency of scheduling (or rescheduling) in daily operations. In particular, the widely used

automatic train operation (ATO) systems in metro lines are commonly embedded with this important function ( IEEE Stan-

dard ). We consider the operation levels on each travel link ( i, j ), which are defined by a set of realistic train speed profiles,

i.e., 

v l i j (t) ∈ 

{
v 1 i j (t) , v 2 i j (t) , · · · , v L i j (t) |∀ 1 ≤ l ≤ L, 

∫ t l 
i j 

t=0 

v l i j (t) dt ≡ s (i, j) 

}
, 

in which t represents the time index after train k departs from station i (here, we set departure time as 0 ), s ( i, j ) is the

length of link ( i, j ), l ∈ {1, 2, ���, L } indicates the operation level of each train, and t l 
i j 

refers to the preseted travel time of

train k on link ( i, j ) corresponding to operation level l . Here, we note that the time interval in the space-time network is

assumed to be short enough, so that all the departure times and arrival times in different operation levels for the trains

can be represented by space-time nodes in this network. Moreover, if we consider the entering time t on link ( i, j ) (i.e.,

the departure time from station i ), we then can use a unified representation v k 
i jt t ′ (y ) t o denote differ ent speed pr ofiles for

each train k , where v k 
i jt t ′ (y ) = v l 

i j 
(y − t ) with t ′ = t + t l 

i j 
and y ∈ [ t, t ′ ]. According to the theoretical train motion equations

(see Howlett and Pudney, 1995; Albrecht et al., 2016 ), the train movement in each segment typically contains acceleration,

braking, coasting and cruising. In this study, considering the entering time t = 0 , we use four sets, i.e., T la 
i j 

, T lb 
i j 

, T lc 
i j 

and

T lr 
i j 

, each of which is a series of discrete timestamps, to respectively denote the train acceleration, braking, coasting and

cruising timestamps on each physical link ( i, j ) and operation level l . Furthermore, if we consider the entering time t , the

timestamp of each operation state should be added by the entering time t . That is, we can use t + T la 
i j 

, t + T lb 
i j 

, t + T lc 
i j 

, t + T lr
i j 

to represent the timestamp sets of train operation states (i.e., acceleration, braking, coasting and cruising) on the link ( i, j )

with entering time t and operation level l . 

Next, we explicitly show the time-position-velocity profiles for the train operation levels in Fig. 3 a (we only illustrate

three curves for simplicity). A train departs from station i at time t = 0 , uses one of these profiles to drive for the next sta-

tion j , and then arrives at any timestamp t l 
i j 

= Q 

l 
i j 

· δ, where Q 

l 
i j 

is a link-and-operation-level-dependent integer, i.e., Q 

l 
i j 

∈ N 

+ .
Additionally, since each time interval corresponds to a given train operation state (acceleration, braking, coasting or cruis-

ing), we can easily derive from this figure that, if the train employs operation level 1, the timestamp sets for train operation

states are T 1 a 
i j 

= { 0 , δ, 2 δ, 3 δ} , T 1 c 
i j 

= { 4 δ, 5 δ} and T 1 b 
i j 

= { 6 δ, 7 δ} , respectively. In particular, each timestamp in the above sets

actually represents an operation time interval in the discretized time horizon (for instance, timestamp δ represents that the

train should accelerate in time interval [ δ, 2 δ)). 
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Next, we further give an illustration to clarify the concept of operation levels in practical metro train control systems.

In practice, different operation levels will necessarily correspond to different operation modes. For instance, in the Chengdu

metro system, a total of five operation levels are predetermined for train operations in each travel segment, and each oper-

ation level practically corresponds to a specific link-dependent speed profile. As illustrated in Fig. 3 b, each higher operation

level (e.g., level 5 versus level 4) corresponds to a unique velocity profile (i.e., the projection of the time-position-velocity

profile on the plane of coordinates position and velocity) that increases the link travel time by about 5 − 10 s, and in con-

trast, the velocity of each lower level reduces the link travel time by about 5 − 10 s ( Hua and Lin, 2014 ). In daily operations,

the dispatchers can use the lower operation levels to reduce the train travel times in peak hours, or reschedule the current

timetable in case of disturbances, which can effectively release the transport pressure and improve the service quality of

metro systems. Meanwhile, the travel speed of trains in off-peak hours can be scheduled to be relatively slow with higher

operation levels in order to save energy for train operations. 
• Illustration of space-time network formulation for metro train scheduling 

We use Fig. 2 to demonstrate the space-time network formulation with multiple operation levels, in which the physical

route of train k consists of four nodes and three links. A total of 13 timestamps, i.e., t 0 , t 0 + δ, ���, t 0 + 12 δ, are considered

to represent the whole time horizon. In this space-time network, each space-time node represents the state of a physical

node at the current timestamp. In addition, two types of velocity profiles, which correspond to two types of space-time

arcs, are considered for generating trajectory of train k . Operation levels 1 and 2 subject to the arc travel times 3 δ and

4 δ in each segment, respectively. Particularly, we define the waiting arcs to imply the dwelling times of trains, and each

waiting arc indicates that the train is scheduled to dwell at this station for time length δ. Here, we give a space-time

trajectory of train k from origin to destination to demonstrate the schedule process. As can be seen in this figure, train k

first dwells at station 1 at timestamp t 0 , and departs from this station at timestamp t 0 + δ. Travelling with operation level

2, train k arrives at station 2 at timestamp t 0 + 5 δ. After one time interval dwelling, train k departs from station 2 by using

operation level 1. Likewise, the train finally reaches the destination at timestamp t 0 + 12 δ. In this sense, the train scheduling

problem can be transformed into a coordinated routing problem with the consideration of multiple trains in this space-time

network. In order to formulate mathematical models for metro train scheduling problem by using the space-time network

representation, we first make the following assumptions throughout this paper: 

Assumption 1. First, we assume that the provided total train capacity is greater than or equal to the total passenger de-

mand, and the last train stops at every station and departs from the first station at the exact ending time T of the study

period. This assumption is to ensure that all passengers arrive at their destination stations during the planning horizon. 

Assumption 2. At each station, we further assume that the oversaturation situation is not permitted, and each train should

use its capacity c j to accommodate all waiting passengers. If oversaturation is allowed at stations, then we refer readers to

our previous paper ( Niu and Zhou, 2013 ) for various models on calculating the effective loading time periods. 

Assumption 3. In this study, we shall not track the detailed number of passengers getting on/off each train, but consider

the estimated loading capacity. It is particularly required that the loading capacity of each train stopping at each station is

larger than the aggregated total passenger demands during the departure of two successive trains. 

Assumption 4. Finally, we assume that the considered metro trains only consume energy in acceleration and cruising

phases. This is a practical case in metro systems that has been widely adopted in many previous studies (e.g., Yang et al.,

2015b; Pena-Alcaraz et al., 2012; Wang et al., 2014 ). 

3. Mathematical formulation 

In this section, we rigorously formulate two mathematical models in order to solve the metro train scheduling problem.

The following discussion will focus on specifying each part of the models, including parameters, decision variables, objective

functions and systematic constraints. 

3.1. Notations 

3.1.1. Symbols and parameters 

I = { 1 , 2 , . . . , 2 I} Set of involved metro stations 

K = { 1 , 2 , . . . , K} Set of in-service trains to be scheduled 

U = { 1 , 2 , . . . , U} Set of power supply substations 

L = { 1 , 2 , · · · , L } Set of operation levels 

T = { t 0 , · · · , t 0 + Mδ} Set of timestamps in the planning horizon 

A Set of space-time arcs 

S Set of involved links 
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i, j Index of metro stations, i, j ∈ I
( i, j ) Index of directed links, (i, j) ∈ S
t, t ′ , τ , τ ′ , y Time index 

( i, i, t, t ′ ) Index of space-time waiting arcs indicating waiting time at station i , t ′ = t + δ
( i, j, t, t ′ ) Index of space-time arcs indicating the actual movement at entering time t and 

leaving time t ′ on link ( i, j ), (i, j, t, t ′ ) ∈ A , determined by different profiles 

k Service index of in-service trains, k ∈ K
u Index of power supply substations, u ∈ U
l Operation level index, l ∈ L 

K p Fleet size of interest 

O Dummy origin station 

D Dummy destination station 

s ( i, j ) Length of link ( i, j ) 

C k Loading capacity of train k 

m k Mass of train k 

p ij ( t ) Time-variant demand ratio from stations i to j in time interval (t − δ, t] 

b i max Allowable passenger boarding speed at station i 

d i Maximum dwelling time at station i 

d i Minimum dwelling time at station i 

t l 
i j 

Travel time on link ( i, j ) with operation level l 

v k 
i jt t ′ (y ) Speed profile for train k on space-time arc ( i, j, t, t ′ ), y ∈ [ t, t ′ ] 

F k 
i jt t ′ (y ) Traction force for train k on space-time arc ( i, j, t, t ′ ), y ∈ [ t, t ′ ] (per unit mass) 

B k 
i jt t ′ (y ) Braking force for train k on space-time arc ( i, j, t, t ′ ), y ∈ [ t, t ′ ] (per unit mass) 

T al 
i j 

Set of timestamps for train acceleration on link ( i, j ) with operation level l 

T bl 
i j 

Set of timestamps for train braking on link ( i, j ) with operation level l 

T cl 
i j 

Set of timestamps for train coasting on link ( i, j ) with operation level l 

T rl 
i j 

Set of timestamps for train cruising on link ( i, j ) with operation level l 

c r Coefficient from kinetic energy to regenerative energy 

c a Available energy percentage after transmission 

θ a , θb , θ c Davis parameters of friction forces 

N 

+ Set of nonnegative integer variables 

3.1.2. Decision variables 

In this study, we consider three types of decision variables in scheduling trains with the time-variant passenger demands,

which are detailed as follows. 

x k 
i jt t ′ Selection indicator for space-time arc, = 1 if train k uses link ( i, j ) in time interval [ t, t ′ ]; = 0 , otherwise ( binary

variable ) 

b i t Number of boarding passengers at station i in time interval (t − δ, t] ( nonnegative integer variable ) 

n i t Number of waiting passengers at station i and time t ( nonnegative integer variable ) 

In general, decision variable x k 
i jt t ′ is employed to generate a space-time trajectory for each train k . The other two variables,

i.e., b i t and n i t are introduced to represent the time-variant numbers of boarding passengers and waiting passengers at each

station, which can be used as the passenger flow control variables in the scheduling process (A similar definition is also

adopted by Barrena et al., 2014a ). Typically, these two sets of variables are intermediate variables associated with x k 
i jt t ′ in

the given space-time network representation. 

Remark 3.1. After the arrival of a physical train at the terminus (i.e., station 1), its service index will be augmented when

this train departs. For example, a metro line has K p physical trains in total (namely the fleet size), which are numbered as

trains 1, 2, ���, K p . For each physical train p with 1 ≤ p ≤ K p , the service index of train p is changed to p + K p when it

finishes the first cycle and prepares to start the next cycle. Thus, the service indexes of trains can be successively numbered

by 

Cycle 1 ︷ ︸︸ ︷ 
1 , 2 , · · · , K p , 

Cycle 2 ︷ ︸︸ ︷ 
K p + 1 , · · · , 2 K p , · · · , 

Cycle N c ︷ ︸︸ ︷ 
(N c − 1) K p + 1 , · · · , N c K p , N c K p + 1 , · · · , N c K p + N p ︸ ︷︷ ︸ 

The total number is |K| 
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Fig. 4. Time-variant passenger demands at stations of Yizhuang line through a single day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in which N c and N p are nonnegative integer values, and N p ≤ K p . For simplicity, we use set K to represent the set of service

indexes of trains in this paper. 

As mentioned above, the aim of metro train scheduling process is to develop a balanced train timetable between service

quality and operation cost with the limitation of metro infrastructures. In this study, the service quality refers to the total

passenger waiting time at stations for boarding the on-coming trains, and the operation cost typically refers to the energy

consumption for the travelling of trains. Note that, there are strong intrinsic relationships between these two indicators. For

instance, the passenger waiting time can be reduced by increasing the train departure frequency or the train travel speed

in each link. Meanwhile, the reduction of passenger waiting time may potentially increase the energy consumption, i.e., the

operation costs of metro companies. Therefore, we explicitly analyze these two objectives in the train scheduling problem by

using the space-time network representation, and rigorously formulate two linear optimization models in order to generate

a service-oriented and energy-efficient metro train scheduling plan. 

3.2. Objective function 

This part analyzes two objectives in the problem of interest, i.e., passenger waiting time and train energy consumption. In

the calculation of passenger waiting time, we particularly consider the dynamic passenger demands, which is an important

feature of metro train scheduling process that is different from railway (mainline railway, high-speed railway, etc) scheduling

problems ( Barrena et al., 2014b; Yang et al., 2015a ). Besides, we are interested in formulating the objectives into linear

formulas that could make the model easier to be handled by some commercial solvers (e.g., CPLEX, Gurobi) or the variants of

some classical algorithms (e.g., branch and bound, Lagrangian relaxation), and also provide a good benchmark for subsequent

heuristic solution algorithms. 
• Passenger waiting time 

Due to the wide application of smart card technologies, the time-variant origin-destination (OD) passenger travel data

become available in many new urban metro systems, which provide an effective method for us to analyze the dynamic

passenger demand in a daylong time (see Niu et al., 2015a; Sun et al., 2014; Pelletier et al., 2011 ). For example, Fig. 4

demonstrates the variation of passenger arrival rates recorded at four stations, namely Songjia zhuang station, Xiaocun

station, Xiaohong men station and Jiu gong station, in Beijing Yizhuang metro line on a weekend in Oct. 2014. 

In essence, the dynamic passenger demand at every station can be expressed as a time-variant square matrix p (t) ,

which has as many rows and columns as stations in the network. Each element in this matrix denoted by p ij ( t ) indicates

the passenger demand ratio from station i to j in time interval (t − δ, t] for any t ∈ T \{ t 0 } . In particular, the initial value of

p (t) , i.e., p ij ( t 0 ) is set as zero for any i, j ∈ I . Since this study considers a bi-direction metro line, the passengers who board

the train at an up-direction station i for 1 ≤ i < I need to alight before the train’s turnaround. Likewise, the passengers with

down-direction travel will alight the train before its turnaround, which can be summarized by 

p i j (t) : 

{
≥ 0 , if ( 1 ≤ i ≤ I, 1 ≤ j ≤ I, i < j) ∪ (I < i ≤ 2 I, I < j ≤ 2 I, i < j) 
= 0 , otherwise . 

To model the passenger boarding process, we derive two additional decision variables (nonnegative integer variables), i.e.,

n i t and b i t , which represent the numbers of waiting passengers and boarding passengers at station i and the end of time

interval (t − δ, t] , respectively. The initial value of n i t 0 
is set to be a constant value and b i t 0 

is set to be zero. Then, as adopted

in literature ( Barrena et al., 2014a ), the objective function with respect to passenger waiting time in planning time horizon
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T can be given by 

W T = 

∑ 

i ∈I 

∑ 

t∈T \{ t 0 } 
δ · n 

i 
t , (1)

where 

n 

i 
t = n 

i 
t−δ + 

∑ 

i ≤ j≤2 I 

p i j (t) · δ − b i t , ∀ t ∈ T \{ t 0 } , i ∈ I, (2)

b i t ≤
∑ 

k ∈K 
x k iit ′ t b 

i 
max , ∀ t ∈ T \{ t 0 } , t ′ = t − δ, i ∈ I, (3)

and 

n 

i 
t , b i t ≥ 0 , ∀ t ∈ T , i ∈ I. (4)

In the above formulations, Eq. (2) indicates that, the number of waiting passengers at timestamp t is equal to the number

of waiting passengers at timestamp t − δ plus the arrival passengers and then subtract the number of boarding passengers

in this time interval. In addition, Eq. (3) restricts the number of boarding passengers in one time interval, where b i max is the

maximum allowable boarding passengers in one time interval at station i . Specifically, if there is a train k ∈ K that is dwelling

at station i in time interval [ t − δ, t] , we have 0 ≤ b i t ≤ b i max ; otherwise, we have b i t = 0 since there is no train dwelling at

station i in this time interval, and thus no passengers can board. For simplification, the maximum allowable boarding speed

b i max is treated as a constant value in this study, i.e., it is not affected by the train remaining capacity or number of waiting

passengers. We can also refer to Wang et al. (2014) and Lin and Wilson (1992) for more practical explanations on this point.

Besides, to represent the time-variant passenger demands at station i , we define 

d i t = 

∑ 

i ≤ j≤2 I 

p i j (t) · δ, ∀ t ∈ T , i ∈ I 

which indicates the number of arriving passengers at station i and timestamp t . 

Proposition 1. The objective function of passenger waiting time in Eq. (1) is essentially equivalent to the following formulation: 

W T = 

∑ 

i ∈I 

∑ 

t∈T \{ t 0 } 
δ · (n 

i 
t 0 

+ 

∑ 

t̄ ∈ [ t 0 ,t] 

(d i 
t̄ 
− b i 

t̄ 
)) , (5)

with the constraint of 
∑ 

t̄ ∈ [ t 0 ,t] b 
i 
t̄ 
≤ n i t 0 

+ 

∑ 

t̄ ∈ [ t 0 ,t] d 
i 
t̄ 

for ∀ t ∈ T and i ∈ I . (Here, [ t 0 , t ] is an abbreviation for set { t 0 , t 0 + δ, t 0 +
2 δ, · · · , t} .) 

Proof. In essence, this proof aims to find an equivalent relationship between decision variables n i t and b i t . We note that,

Eq. (2) holds for any t ∈ T \{ t 0 } and i ∈ I . We can list a sequence of equations for any t ∈ T \{ t 0 } , i.e., 

n 

i 
t 0 + δ = n 

i 
t 0 

+ d i t 0 + δ − b i t 0 + δ, (6)

n 

i 
t 0 +2 δ = n 

i 
t 0 + δ + d i t 0 +2 δ − b i t 0 +2 δ, (7)

· · · · · · (8)

n 

i 
t = n 

i 
t−δ + d i t − b i t . (9)

By summing up the sequence of equations, we can get 

n 

i 
t = n 

i 
t 0 

+ 

∑ 

t̄ ∈ (t 0 ,t] 

(d i 
t̄ 
− b i 

t̄ 
) (10)

for each t ∈ T \{ t 0 } and i ∈ I . Since the values of d i t 0 
and b i t 0 

are set as zeros, Eq. (10) can be further represented by n i t = n i t 0 
+∑ 

t̄ ∈ [ t 0 ,t] (d i 
t̄ 
− b i 

t̄ 
) for each t ∈ T and i ∈ I . In this sense, it is clear that, the decision variable n i t is essentially an intermediate

decision variable that can be deduced by b i t . Note that, since n i t is defined to be a nonnegative variable, i.e., n i t ≥ 0 , we also

have the following constraint for b i t , i.e., ∑ 

t̄ ∈ [ t 0 ,t] 

b i 
t̄ 
≤ n 

i 
t 0 

+ 

∑ 

t̄ ∈ [ t 0 ,t] 

d i 
t̄ 
, ∀ t ∈ T , i ∈ I. (11)

Then, taking Eq. (10) into the original Eq. (1) , we prove this proposition. �

Remark 3.2. In the above proof, Eqs. (6) –(11) are essentially the derivation of cumulative flow variables that were proposed

by Daganzo (1997) . We can refer to Chapter 2 in this book for a more detailed description. 
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• Energy consumption 

Energy consumption is an important indicator to evaluate the quality of a train schedule in public transportation

systems, since energy consumption is closely related to environmental concerns and profits of management companies

( Daganzo, 2010 ). Here, we consider the formulation of total energy consumption for the in-service trains in the whole metro

corridor, involving the traction energy consumption and regenerative braking energy. For formulating convenience, we first

use T E k 
i j 

and T D 

k 
i j 

to represent the entering time and leaving time of train k on link ( i, j ) by the selected space-time arcs,

given by 

T E k i j = 

∑ 

(i, j,t ,t ′ ) ∈A 
t · x k i jt t ′ , ∀ (i, j) ∈ S, k ∈ K, (12) 

T D 

k 
i j = 

∑ 

(i, j,t ,t ′ ) ∈A 
t ′ · x k i jt t ′ , ∀ (i, j) ∈ S, k ∈ K. (13) 

In other words, T E k 
i j 

and T D 

k 
i j 

represent the departure time at station i and arrival time at station j for train k , respectively. 

Then, we analyze the link traction energy consumption based on the link travel speed profile of a train. Given the time-

dependent travelling arc (i, j, t, t ′ ) ∈ A of train k ∈ K, the corresponding operation level l ∗ can be uniquely determined by 

l ∗ = argmin l | t l i j − t ′ + t| . (14) 

For example, consider a travelling arc (1, 2, 0, 5), indicating that the train departs from station 1 at timestamp 0 and arrives

at station 2 at timestamp 5. There are totally three operation levels, i.e., l = 1 , 2 , 3 , which correspond to arc travel times 3,

4 and 5, respectively. In this case, we can obviously derive from Eq. (14) that the train travels with operation level l ∗ = 3 .

Using this formulation, the link travel time of arc ( i, j, t, t ′ ) is expressed by t l 
∗

i j 
, which corresponds to accelerating timestamp

set t + T l 
∗a 

i j 
, coasting timestamp set t + T l 

∗c 
i j 

, cruising timestamp set t + T l 
∗r 

i j 
and braking timestamp set t + T l 

∗b 
i j 

. 

Next, we analyze the energy consumption on each space-time travelling arc. Consider the space-time arc ( i, j, t, t ′ ), where

the operation level is denoted by l ∗. Then, the corresponding speed profile is given by v k 
i jt t ′ (y ) for y ∈ [ t , t + t l 

∗
i j 

] , indicating

train k ’s speed with respect to each specific time point y on this arc. According to the mechanical power equation of train

movement described in Wang et al. (2014) and Howlett and Pudney (1995) , the traction and braking force (per unit mass)

of train k can be denoted by 

F k i jt t ′ (y ) = 

{
a l 

∗
i jk 

(y ) + 

1 
m k 

(θa 

(
v k 

i jt t ′ (y ) 
)2 + θb v k i jt t ′ (y ) + θc ) , if y ∈ t + T l 

∗a 
i j 

or y ∈ t + T l 
∗r 

i j 

0 , otherwise 
(15) 

B 

k 
i jt t ′ (y ) = 

{
−a l 

∗
i jk 

(y ) − 1 
m k 

(θa 

(
v k 

i jt t ′ (y ) 
)2 + θb v k i jt t ′ (y ) + θc ) , if y ∈ t + T l 

∗b 
i j 

0 , otherwise 
(16) 

in which a l 
∗

i jk 
(y ) is the acceleration rate at time y that can be derived by the corresponding speed profile on arc ( i, j, t, t ′ ),

and θa 

(
v k 

i jt t ′ (y ) 
)2 

+ θb v k i jt t ′ (y ) + θc is the Davis formula that represents the friction resistances. Particularly, since the train

speed is constant in train cruising phase, i.e., a l 
∗

i jk 
(y ) = 0 , F k 

i jt t ′ (y ) in Eq. (15) can essentially indicate the traction force in both

accelerating and cruising phases. Besides, in train coasting phase there is no traction or braking force, and hence no energy

consumption occurs. Then, according to the mechanical power equation, the actual energy consumption on this space-time

arc can be calculated by the train mass times the integral of power over the operation time interval. Therefore, the required

energy of train k on travelling arc ( i, j, t, t ′ ) can be formulated as 

E k (i, j, t, t ′ ) = 

∫ t + t l ∗
i j 

t 

m k F 
k 

i jt t ′ (y ) v k i jt t ′ (y ) dy, ∀ (i, j, t, t ′ ) ∈ A , k ∈ K. (17) 

3.3. Model 1: energy-efficient metro train scheduling with dynamic passenger demands 

Considering the above two objective functions, the energy-efficient metro train scheduling model with dynamic passen-

ger demands (denoted by ETS model) can be formulated as follows: 

(ETS) min 

x , b 
Z 1 (x , b ) = w T 

∑ 

i ∈I 

∑ 

t∈T \{ t 0 } 
δ · (n 

i 
t 0 

+ 

∑ 

t̄ ∈ [ t 0 ,t] 

(d i 
t̄ 
− b i 

t̄ 
)) + w E 

∑ 

k ∈K 

∑ 

(i, j,t ,t ′ ) ∈A 
E k (i, j, t, t ′ ) x k i jt t ′ (18) 

s.t. 
∑ 

(i, j,t ,t ′ ) ∈A 
x k i jt t ′ −

∑ 

( j,i,t ′ ,t) ∈A 
x k jit ′ t = 

⎧ ⎨ 

⎩ 

1 i = O, t = t 0 , 

−1 i = D, t = t 0 + Mδ, 

0 otherwise , 

∀ k ∈ K (19) 

T E k 2 I,D + T R k ≤ T D 

k + K p 
, ∀ k, k + K p ∈ K (20) 
O 1 
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T D 

k 
I (I +1) − T E k I (I +1) = T A k , ∀ k ∈ K (21)

T E k −1 
i j 

+ h i j ≤ T E k i j , ∀ (i, j) ∈ S, k ∈ K\{ 1 } (22)

T D 

k −1 
i j 

+ h i j ≤ T D 

k 
i j , ∀ (i, j) ∈ S, k ∈ K\{ 1 } (23)

T D 

k 
j ′ i + d i ≤ T E k i j , ∀ (i, j) ∈ S, ( j ′ , i ) ∈ S, k ∈ K (24)

T E k i j − d i ≤ T D 

k 
j ′ i , ∀ (i, j) ∈ S, ( j ′ , i ) ∈ S, k ∈ K (25)

T E k i j = 

∑ 

(i, j,t ,t ′ ) ∈A 
t · x k i jt t ′ , ∀ (i, j) ∈ S, k ∈ K (26)

T D 

k 
i j = 

∑ 

(i, j,t ,t ′ ) ∈A 
t ′ · x k i jt t ′ , ∀ (i, j) ∈ S, k ∈ K (27)

b i t ≤
∑ 

k ∈K 
x k iit ′ t b 

i 
max , ∀ i ∈ I, t ∈ T \{ t 0 } , t ′ = t − δ (28)

∑ 

t̄ ∈ [ t 0 ,t] 

b i 
t̄ 
≤ n 

i 
t 0 

+ 

∑ 

t̄ ∈ [ t 0 ,t] 

d i 
t̄ 
, ∀ i ∈ I, t ∈ T (29)

∑ 

i ′ ∈ [1 ,i ] 

∑ 

t∈T 

[ 2 I ∑ 

j>i 

δ · p i ′ j (t + δ) 
∑ 

˜ t ∈ [ t 0 ,t] 

∑ 

t ′ ∈T 
(x k −1 

i ′ (i ′ +1) ̃ t t ′ − x k 
i ′ (i ′ +1) ̃ t t ′ ) 

] 
≤ C k , 

∀ i ∈ I, k ∈ K\{ 1 } (30)

x k i jt t ′ ∈ { 0 , 1 } , ∀ (i, j, t, t ′ ) ∈ A , k ∈ K (31)

b i t ∈ N 

+ , ∀ i ∈ I, t ∈ T . (32)

In this model, the objective function (18) aims to determine the optimal train scheduling plan and speed profile in each

segment such that the weighted total passenger waiting time and train energy consumption can be minimized within the

given time horizon. Note that, to obtain a trade-off solution, we give two weight factors, i.e., w T and w E , to respectively

indicate the importance of each objective. In this sense, we actually transform the passenger waiting time and energy con-

sumption into their generalized costs with the same unit scales in the objective function. Constraint (19) is the space-time

flow balance constraint, which ensures to generate a feasible space-time path for each train in the space-time network

(see in Mahmoudi and Zhou, 2016; Yang and Zhou, 2014 ). In order to represent the beginning and ending of the gen-

erated space-time paths, a dummy origin and a dummy destination, denoted by O t 0 and D t 0 + Mδ, respectively, are added

into the space-time network. Moreover, to show the connection between the dummy origin and physical origin, a total of

M + 1 dummy time-dependent arcs are also added into the space-time network without actual link travel times, denoted

by (O, 1 , t 0 , t 0 + mδ) , 0 ≤ m ≤ M. In the scheduling process, if an arc (O, 1 , t 0 , t 0 + mδ) is selected by a train, it indicates that

the actual arrival time of this train at station 1 is t 0 + mδ. Likewise, we also add M + 1 dummy time-dependent arcs into

the space-time network to show the connection between the physical destination and dummy destination without actual

link travel times, denoted by (2 I, D, t 0 + mδ, t 0 + Mδ) , 0 ≤ m ≤ M. If an arc (2 I, D, t 0 + mδ, t 0 + Mδ) is selected, it shows that

the actual departure time of this train at station 2 I is t 0 + mδ. For clarity, we illustrate the travel routes of five trains in a

space-time network with 3 physical stations and 13 timestamps. As shown in Fig. 5 , by using the dummy arcs, all the trains

start their journeys from the dummy origin and finally arrive at the dummy destination. 

Constraint (20) defines the minimum turnaround time TR k for train k at the terminus to prepare for the next cycle. Con-

straint (21) fixes the turnaround time TA k for each train k ∈ K at the turnaround station I . Constraints (22) and (23) are

the headway constraints that guarantee the least time distance h ij between two adjacent trains when they enter or leave

the common link ( i, j ). Constraints (24) and (25) set the lower and upper bounds for dwelling times of the trains at each

station, respectively. Constraints (26) and (27) define the entering time T E k 
i j 

and departure time T D 

k 
i j 

of train k on link

( i, j ) in the space-time network. Constraint (28) links the decisions variables x and b . Specifically, if there is no train

dwelling at station i at time t , we have b i t = 0 ; otherwise, the number of boarding passengers b i t in one time interval

should be bounded by an allowable passenger boarding speed, i.e., b i max . Constraint (29) is derived in Proposition 1 , in-

dicating that the number of waiting passengers at any time and station should be nonnegative. Constraint (30) is the train
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Fig. 5. Dummy origin and destination for trajectories generation of all the trains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

capacity constraint to guarantee that the total passenger demands at one station are no more than the train loading capac-

ity. 
∑ 

˜ t ∈ [ t 0 ,t] 

∑ 

t ′ ∈T (x k −1 
i ′ (i ′ +1) ̃ t t ′ − x k 

i ′ (i ′ +1) ̃ t t ′ ) equals to 1 only when train k − 1 departs from station i ′ at or before timestamp t

while train k has not; otherwise, it equals to 0. This formulation is particularly derived to represent the time period be-

tween the departures of train k and k − 1 from station i ′ , which is similar to the definition given by Niu and Zhou (2013) .∑ 2 I 
j>i δ · p i ′ j (t + δ) represents the passenger demands in time interval (t, t + δ] with origin i ′ ≤ i and destination j > i . The

last two constraints, i.e., constraints (31) and (32) denote that the decision variables x are binary variables while elements

of b are nonnegative integer values. 

Remark 3.3. Here, we particularly refer to a nonlinear model that was proposed by Niu et al. (2015b ) to minimize the

passenger waiting time with dynamic demands. This nonlinear model adopts less variables and can sometimes achieve

faster computational speed compared with the linear model in this study. Nevertheless, we note that, the nonlinear model

is actually difficult to model the train operation states and the energy consumption. Therefore, in this study we derive the

linear formulation with the space-time network representation method for the integrated metro train scheduling problem. 

3.4. Model 2: ETS with consideration of train regenerative energy 

In the former ETS model, we focus on the minimization of passenger waiting time and train traction energy consump-

tion in condition of time-variant passenger demands. We note that, with the increasing concerns on environmental issues,

train regenerative energy, which accounts for nearly one third in the train energy consumption of a metro system, has re-

ceived significant attention in order to reduce the total energy consumption and achieve a green public transport mode (see

Albrecht et al., 2016; Huang et al., 2016; Yang et al., 2015c ). The regenerative energy is generated by braking trains through

converting the kinetic energy into electricity. Typically, one of the efficient approaches to utilize the regenerative braking

energy is to coordinate the operations of metro trains properly such that the regenerated energy by a braking train can be

immediately used by other accelerating trains in the same power supply substation. The main advantage of this approach is

that it has no need of any additional energy storage equipments that will cause extra infrastructure or maintenance costs.

Nevertheless, if the regenerative energy cannot be utilized timely, i.e., there is no accelerating train simultaneously, the en-

ergy will be wasted by heating resistors. Hence, one of the critical problems is how to schedule the timetable and control

the speed profiles of trains such that the regenerative energy from braking trains can be used by nearby accelerating trains.

Due to the complexity of dynamic characteristics of the train operation problem, for instance the “real-time” property of

regenerative energy, the most existing approaches for maximizing the use of regenerative braking energy are formulated as

complex nonlinear models that can only be solved by some evolutionary heuristic algorithms (e.g., GA, ACO, TS). To this end,

we are particularly interested in formulating the regenerative braking energy into a linear formula that can be potentially
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Fig. 6. Regenerative energy transmission in a space-time network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

handled by some optimization solvers or exact algorithms. In the following discussion, we further consider the utilization

of train regenerative energy with multiple substations on the basis of the ETS model formulated above. 

For illustrative convenience, an example is first given here to state the regenerative energy transformation among train

k 1 , train k 2 and train k 3 in the space-time network. As shown in Fig. 6 , we illustrate the space-time trajectories of trains k 1 ,

k 2 and k 3 that travel in the metro corridor with 8 stations, with the assumption that these eight stations are in the same

substation. It can be seen that, trains k 1 and k 2 are travelling in the up-direction, while train k 3 is travelling in the down-

direction. For simplicity, each travel arc is assumed to be composed of accelerating, coasting and braking phases, which are

illustrated with different colors in this figure. In each time interval, the regenerative energy can be used only when a train

is braking and another train is accelerating at the same time. We can see clearly that there are a total of four overlapping

regions where some trains brake and the remainder trains accelerate. The first overlapping region is between timestamps

t 3 and t 4 , when train k 1 brakes on link (1, 2) and train k 2 and k 3 can use the regenerative energy as a part of accelerating

energies to travel on their corresponding links. Likewise, the regenerative energy transformations also take place between

time intervals [ t 5 , t 6 ], [ t 7 , t 8 ] and [ t 9 , t 10 ], respectively. 

In this study, we take advantage of the space-time network formulation to model the utilization of regenerative energy

among all the trains in the same power supply substation. Specifically, we first consider one time interval [ t, t + δ] in the

formulated space-time network. To model the regenerative energy transmission in time interval [ t, t + δ] for each substation

u ∈ U , we need to calculate the total acceleration energy consumption and regenerative braking energy for all the trains in

this interval. 

In particular, we derive a unified formulation of train energy consumption in time interval [ t, t + δ] and substation u as

follows. 

F a (u, t) = 

∑ 

k ∈K 

∑ 

(i, j,τ,τ ′ ) ∈A ,τ≤t,τ ′ >t 

[
m k φ( i, j, u ) x k i jττ ′ 

∫ t+ δ

y = t 
F k i jττ ′ ( y ) v k i jττ ′ ( y ) dy 

]
, ∀ u ∈ U , t ∈ T M , 

in which T M = T \{ t 0 + Mδ} , and φ( i, j, u ) denotes whether link ( i, j ) is located in substation u . In other words, if segment

( i, j ) is located in substation u , we have φ(i, j, u ) = 1 ; otherwise, φ(i, j, u ) = 0 . Specifically, in the real-world operations, if

x k 
i jττ ′ = 0 or [ t, t + δ] ∩ [ τ, τ ′ ] = ∅ , the traction energy of train k in [ t, t + δ] is typically zero. On the other hand, if x k 

i jττ ′ = 1

and [ t, t + δ] ∩ [ τ, τ ′ ] � = ∅ , the traction energy of train k may occur in this time interval over the power supply substation.

For instance, consider the time interval [ t , t ] in Fig. 6 . We need to find all the possible travel arcs for the considered trains
7 8 
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that go through this time interval, i.e., space-time arcs (2, 3, t 5 , t 8 ), (6, 7, t 7 , t 10 ) and (2, 3, t 7 , t 10 ). Then we sum up their

corresponding traction energy of these arcs in time interval [ t 7 , t 8 ] to obtain the total traction energy consumption. 

Similarly, the regenerative braking energy in time interval [ t, t + δ] and substation u can also be denoted by 

R b (u, t) = c r 
∑ 

k ∈K 

∑ 

(i, j,τ,τ ′ ) ∈A ,τ≤t,τ ′ >t 

[
m k φ( i, j, u ) x k i jττ ′ 

∫ t+ δ

y = t 
B 

k 
i jττ ′ ( y ) v k i jττ ′ ( y ) dy 

]
, ∀ u ∈ U , t ∈ T M , 

in which c r is the regenerative energy coefficient from kinetic energy to regenerative braking energy. 

Here, we note that, both F a ( u, t ) and R b ( u, t ) have a linear form with respect to the decision variable x . In this sense, the

utilization of regenerative energy in time interval [ t, t + δ] over substation u can be given by the minimum of regenerative

energy by braking trains (after transmission loss) and energy consumption of accelerating trains, i.e., 

G u (t) = min { F a (u, t) , c a R b (u, t) } , (33) 

for each t ∈ T M and u ∈ U , in which c a is the available percentage of regenerative energy after transmission loss. Consider-

ing the utilization of regenerative energy, the Model 2, i.e., energy-efficient train scheduling model with train regenerative

energy (RTS) is formulated as follows. 

min 

x , b 
Z(x , b ) = w E 

[ ∑ 

k ∈K 

∑ 

(i, j,t ,t ′ ) ∈A 
E k (i, j, t, t ′ ) x k i jt t ′ −

∑ 

t∈T M 

∑ 

u ∈U 
G u (t) 

] 

+ w T 

∑ 

i ∈I 

∑ 

t∈T \{ t 0 } 
δ(n 

i 
t 0 

+ 

∑ 

t̄ ∈ [ t 0 ,t] 

(d i 
t̄ 
− b i 

t̄ 
)) 

s.t. constraints (19) − (32) . 

(34) 

In this formulation, the objective function further considers the utilization of regenerative energy, and the constraints (19) –

(32) are the same as those in Model 1. 

Nevertheless, we note that, the objective function in this model has a min function, i.e., G u ( t ). To transform this formu-

lation into the linear form, we derive a more general formulation by introducing a set of nonnegative variables r u t for each

t ∈ T M and u ∈ U , to represent the utilized energy in time interval [ t, t + δ] over power supply substation u . Then, the RTS

model can be uniformly formulated as a mixed-integer linear programming (MILP) model, given as follows. ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

min 

x , b , r 
Z(x , b , r ) = w E 

[ ∑ 

k ∈K 

∑ 

(i, j,t ,t ′ ) ∈A 
E k (i, j, t, t ′ ) x k i jt t ′ −

∑ 

t∈T M 

∑ 

u ∈U 
r u t 

] 

+ w T 

∑ 

i ∈I 

∑ 

t∈T \{ t 0 } 
δ(n 

i 
t 0 

+ 

∑ 

t̄ ∈ [ t 0 ,t] 

(d i 
t̄ 
− b i 

t̄ 
)) 

s . t . constraints (19) − (32) 

r u t ≤ F a (u, t) , ∀ u ∈ U , t ∈ T M 

r u t ≤ c a R b (u, t) , ∀ u ∈ U , t ∈ T M 

r u t ∈ R 

+ , ∀ u ∈ U , t ∈ T M . 

(35) 

Proposition 2 . The developed RTS model (35) is essentially equivalent to model (34) . 

Proof . By the introduction of new variables r u t , i.e., the value of utilized regenerative energy in time interval [ t, t + δ] over

substation u , these two models can be equivalent only if we guarantee that r u t = min { F a (u, t) , c a R b (u, t) } is always true in the

process of minimizing objective functions. In essence, adding constraints r u t ≤ F a (u, t) and r u t ≤ c a R b (u, t) will be sufficient if

the model ensures that the largest value of r u t will always be chosen. In particular, we note that, the coefficients of variable

r u t are all negative values, and the variable r u t is not connected to other variables except for these new added constraints. It

is obvious that, r u t will always choose either F a ( u, t ) or c a R b ( u, t ) such that the model can be optimized. Therefore, by adding

these two constraints, it is ensured that the condition r u t = min { F a (u, t) , c a R b (u, t) } is always true in the optimal solution,

which guarantees the equivalence of these two models. �

3.5. Complexity of formulation 

Typically, all the variables in the proposed formulations can be divided into three categories. The first type, i.e., x , is asso-

ciated with binary decision variables that determine the routing trajectories of scheduled trains in the space-time network.
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Table 2 

Numbers of variables and constraints in ETS and RTS models. 

Variable or constraints Total number at most for ETS model Total number at most for RTS model 

Binary variable x |I| · |T | · (|L| + 1) · |K| |I| · |T | · (|L| + 1) · |K| 
Integer variable b |T | · |I| |T | · |I| 
Continuous variable r 0 |T | · |U| 
Flow balance constraints (19) (|T | · |I| + 2) · |K| (|T | · |I| + 2) · |K| 
Turn-around constraints 2 |K| − K p 2 |K| − K p 
Headway constraints 2(|K| − 1) · |A| 2(|K| − 1) · |A| 
Dwelling time constraints 2 |I| · |K| 2 |I| · |K| 
Passenger boarding constraints 2 |I| · |T | 2 |I| · |T | 
Capacity constraints |I| · |K| |I| · |K| 
Regenerative energy constraints 0 2 |U| · |T | 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second refers to integer variables, i.e., b , which represent the number of boarding passengers at each timestamp and

station. Decision variable r is nonnegative decision variables, which are employed in RTS model to formulate the utilization

of regenerative energy at each timestamp and substation. It is obvious that there only exist linear formulations in the ob-

jectives of two developed models, i.e., ETS model and RTS model. Besides, all the constraints (i.e., constraints (19) –(32) and

last three constraints in (35) ) are linear equalities or inequalities. We conclude that, ETS and RTS models are linear integer

programming model and mixed integer linear programming (MILP) model, respectively. 

Next, we are particularly interested in analyzing the complexity of the proposed formulations. The following discussion

will detail the total numbers of variables and some critical constraints involved in the problem, listed in Table 2 , where | · |

represents the cardinality of a set { · }. In particular, the number of binary variables x is given by |I| · |T | · (|L| + 1) · |K| , in
which |L| + 1 represents one waiting arc and |L| travelling arcs, and each travelling arc corresponds to one operation level

l . 

It is clear that, the complexity of the ETS and RTS formulations is fully dependent on the physical scale of the scheduled

metro corridor, the numbers of time intervals, trains and operation levels of the train control system. For illustrative con-

venience, an example is given to clarify the total number of decision variables for these two models. We consider 10 trains

in a metro corridor with 10 stations (5 up-direction and 5 down-direction stations) covered by 2 power supply substations,

and there are 3 operational levels (i.e., 3 alternative speed profiles) for the trains on each physical link. We use 200 time in-

tervals as the time horizon to set up space-time networks, which will produce 80 0 0 0 binary variables with respect to x and

20 0 0 integer variables with respect to b . Moreover, if we consider the utilization of regenerative energy over each substa-

tion among the trains, a total of 400 nonnegative continuous variables r u t are also needed to specify how much regenerative

braking energy can be used in each time interval and substation. 

4. Solution approaches 

The energy-efficient metro train scheduling model with dynamic demands is a complex problem with integer, binary and

continuous variables, and it is very computationally intensive in practice, especially for the real-world large-scale problems.

For example, for the instance referred in Secion 3.5, there are totally 80,0 0 0 binary variables, 20 0 0 integer variables and

400 continuous variables for RTS model. By using the CPLEX solver on a personal computer, it takes as long as 8 hours to

solve this model with only 2 trains, and for 4 trains, it takes about 20 hours to obtain a solution with 5% gap (please see

Section 5 for details). Therefore, in this section, we aim to develop a solution algorithm that can efficiently obtain a good

schedule in a much shorter time. In the following, Section 4.1 proposes a Lagrangian relaxation method that decomposes

model (35) (i.e., RTS model) into two relatively easy subproblems, i.e., subproblem 1 with only binary variables x k 
i jt t ′ and

continuous variables r u t , and subproblem 2 with only integer variables b i t . Section 4.2 utilizes the relaxed solution to re-

generate a feasible solution that yields an upper bound to the primal objective. Section 4.3 designs a sub-gradient search

approach that iteratively updates both relaxed and feasible solutions to reduce the optimality gap between the upper bound

(the best feasible solution) and the estimated lower bound to an acceptable tolerance. 

Remark 4.1. Note that, the only difference between models ETS and RTS is the introduction of new decision variable r u t and

the corresponding constraints. Therefore, in the following content, we only present the solution methodology for model RTS

(i.e., model (35) ), and model ETS (i.e., model (18) ) can also be solved in a similar way. 

4.1. Lagrangian relaxation and decomposition 

It can be seen from the RTS model that, the Eq. (28) includes a set of hard constraints that couple variables x and

b , which may seriously affect the computational speed. If we relax this set of constraints, the model can be decomposed

into two separate problems that can be handled more efficiently. Therefore, we first dualized constraints (28) with a set of

Lagrangian multipliers ρ := { ρ i 
t ≥ 0 } i ∈I,t∈T \{ t } to obtain the following relaxed problem: 
0 
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�( ρ) := min 

x , b , r 

{ [ 

w E 

∑ 

k ∈K 

∑ 

(i, j,t ,t ′ ) ∈A 
E k (i, j, t, t ′ ) x k i jt t ′ − w E 

∑ 

t∈T M 

∑ 

u ∈U 
r u t −

∑ 

i ∈I 

∑ 

t∈T \{ t 0 } 
ρ i 

t 

∑ 

k ∈K 
x k iit ′ t b 

i 
max 

] 

+ 

∑ 

i ∈I 

∑ 

t∈T \{ t 0 } 

[ 

w T δn 

i 
t 0 

+ w T 

∑ 

t̄ ∈ [ t 0 ,t] 

δ(d i 
t̄ 
− b i 

t̄ 
) + ρ i 

t b 
i 
t 

] } 

(36) 

subject to constraints (19) –(27), (29) –(32) and the last three constraints in model (35) . 

Note that because the relaxed problem (36) no longer contains any connections between the variables x and variables b ,

we may decompose the relaxed problem into two subproblems. The first subproblem contains only binary variables x and

continuous variables r , given below, 

�( ρ) := min 

x , r 

[ ∑ 

k ∈K 

∑ 

(i, j,t ,t ′ ) ∈A 
w E E k (i, j, t, t ′ ) x k i jt t ′ −

∑ 

t∈T M 

∑ 

u ∈U 
w E r 

u 
t −

∑ 

i ∈I 

∑ 

t∈T \{ t 0 } 
ρ i 

t 

∑ 

k ∈K 
x k iit ′ t b 

i 
max 

] 

(37) 

subject to constraints (19) –(27), (30) –(31) and the last three constraints in model (35) . Obviously, the objective function in

model �( ρ) can be rewritten in the following formula: 

�( ρ) := min 

x , r 

∑ 

k ∈K 

[ ∑ 

(i, j,t ,t ′ ) ∈A 
w E E k (i, j, t, t ′ ) x k i jt t ′ −

∑ 

i ∈I 

∑ 

t∈T \{ t 0 } 
ρ i 

t x 
k 
iit ′ t b 

i 
max 

] 

− w E 

∑ 

t∈T M 

∑ 

u ∈U 
r u t . (38) 

Remark 4.2. In essence, the first sub-problem corresponds to a metro train scheduling problem without considering pas-

senger flow, in which no meeting & passing (M&P) and meeting & overtaking (M&O) constraints need to be taken into

consideration due to the operation environment of the metro line of interest. In general, M&P and M&O constraints are

usually regarded as the difficult constraints in solving the train scheduling problem in the main line railway. Without these

two constraints, the CPLEX solver can solve the sub-problem 1 much more easily and faster. 

The second subproblem then can be given as follows. 

	( ρ) := min 

b 

∑ 

i ∈I 

∑ 

t∈T \{ t 0 } 
w T δ

( 

n 

i 
t 0 

+ 

∑ 

t̄ ∈ [ t 0 ,t] 

(d i 
t̄ 
− b i 

t̄ 
) 

) 

+ 

∑ 

i ∈I 

∑ 

t∈T \{ t 0 } 
ρ i 

t b 
i 
t 

s.t. 
∑ 

t̄ ∈ [ t 0 ,t] 

b i 
t̄ 
≤ n 

i 
t 0 

+ 

∑ 

t̄ ∈ [ t 0 ,t] 

d i 
t̄ 
, ∀ i ∈ I, t ∈ T 

b i t ∈ N 

+ , ∀ i ∈ I, t ∈ T . 

(39) 

Here, the constraints in model (39) are essentially the cumulative arrive count relation that is given in Eq. (10) . Additionally,

we further add the following set of constraints to guarantee that the number of boarding passengers at each time interval

and station is restricted by the allowable passenger boarding speed. Typically, these constraints also hold for the primal

model, i.e., 

b i t ≤ b i max , ∀ i ∈ I, t ∈ T . 

To be more specific, model (39) consists of |I| small subproblems 	i ( ρ) for each i = 1 , 2 , . . . , |I| , i.e., 

	i ( ρ) := min 

b 

∑ 

t∈T \{ t 0 } 
w T δ

( 

n 

i 
t 0 

+ 

∑ 

t̄ ∈ [ t 0 ,t] 

(d i 
t̄ 
− b i 

t̄ 
) 

) 

+ 

∑ 

t∈T \{ t 0 } 
ρ i 

t b 
i 
t 

s.t. 
∑ 

t̄ ∈ [ t 0 ,t] 

b i 
t̄ 
≤ n 

i 
t 0 

+ 

∑ 

t̄ ∈ [ t 0 ,t] 

d i 
t̄ 
, ∀ t ∈ T 

b i t ≤ b i max , ∀ t ∈ T 
b i t ∈ N 

+ , ∀ t ∈ T , 

(40) 

in terms of station-based flow waiting process , since it essentially propagates the cumulative passenger arrival and departure

flows at each station. Clearly, this set of models only contain integer variables b i t , which are in the form of cutting stock

problems. Since the scale of this subproblem 	i ( ρ) is much smaller than the original problem, it can be handled more

efficiently. 

Theoretically, by solving problem �( ρ) and a series of subproblems 	i ( ρ) with the given ρ, we can obtain a lower bound

to the original problem (35) . Then, the tightest lower bound can be obtained by solving the following Lagrangian dual

problem. 

max 
ρ≥0 

�( ρ) := �( ρ) + 	( ρ) . (41) 
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Fig. 7. Boarding process of waiting passengers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For each set of Lagrangian multiplier { ρ i 
t } , if we can find the exact optimal objectives for these two sub-problems, we

can produce a lower bound to the original problem. On the other hand, if the sub-problems are still hard to solve their

exact optimal solutions (for instance, the real-world case study in the following section), some heuristic algorithms or the

optimization solvers (e.g., CPLEX) can be adopted to produce a potential lower bound. The obtained solution information

can also be used to update the upper bound if we correct it to a feasible solution to the original problem and act as the

initial solution in the next iteration. In the literature, this type of approach is also adopted by some researches, for instance

Rajagopalan et al. (2004) , Cacchiani et al. (2016) and Dauzère-Pérès et al. (2015) . 

4.2. Estimating prevailing number of waiting passengers 

In the primal model, the aim is to minimize the total train energy consumption and passenger waiting time with time-

variant demands. Here, the set of feasible solution typically refers to three categories of variables, i.e., the space-time tra-

jectories of trains denoted by variable x , utilized regenerative energy denoted by r , and the passenger flow control variable

given by b . 

If the optimal solution obtained by solving relaxed subproblems (38) and (40) is a feasible solution to the primal prob-

lem (35) , its corresponding objective in the primal problem can be regarded as an upper bound to the optimal objective.

Otherwise, we need to develop a heuristic method based on the solutions of subproblems (38) and (40) to reconstruct a

feasible solution in order to update the upper bound in the solution process. To obtain a feasible solution, an intuitive way

is to fix the feasible trajectories of trains (i.e., x ) and regenerative energy (i.e., r ), while updating b values. For simplicity, we

denote x̄ = { ̄x k 
i jt t ′ } , b̄ = { ̄b i t } and r̄ = { ̄r u t } to represent the optimal solutions of relaxed model, which are respectively train

space-time trajectories, number of boarding passengers and utilization of regenerative energy. Since we dualize constraints

(28) , we only need to judge if the solutions x̄ and b̄ satisfy the relaxed constraints (28) , i.e., 

b i t ≤
∑ 

k ∈K 
x k iit ′ t b 

i 
max 

for ∀ i ∈ I, t ∈ T \{ t 0 } and t ′ = t − δ. Specifically, this constraints rigorously consider two different cases for passenger board-

ing process. In the first case, there is no train that dwells at station i and time t , i.e., 
∑ 

k ∈K x k iit ′ t = 0 , then the constraints

guarantee that the number of boarding passenger at this station must equal to 0. In the second case, there is a train that

arrives and dwells at station i and time t , i.e., 
∑ 

k ∈K x k iit ′ t = 1 . In this case, the number of boarding passengers in this time

interval is a nonnegative value that should be less than or equal to the number of current waiting passengers and the al-

lowable boarding speed b i max . To clearly show the passenger boarding process, we adopt Fig. 7 to illustrate the proposed

approach, in which we can see that the passengers’ boarding is only allowed in dwelling time periods of trains. Note that,

due to the headway constraints, there is at most one train that dwells at a station in the same time interval, indicating that∑ 

k ∈K x k iit ′ t ≤ 1 . 

Therefore, we can consider to find a set of feasible solution 

ˆ b = { ̂ b i t } iteratively from the beginning of time horizon t 0 + δ
to t 0 + Mδ for each station i ∈ I by using the solution x̄ (note that, the initial values for b i t 0 

and d i t 0 
are set as zeros, and

each n i t 0 
is set as a constant value). For example, in the first time interval [ t 0 , t 0 + δ] , we firstly calculate 

∑ 

k ∈K x̄ k iit 0 (t 0 + δ)

to specify if there is a train that dwells at station i . If no train is dwelling at this station, we set ˆ b i 
t 0 + δ = 0 . Otherwise,

we set ˆ b i 
t 0 + δ = min { n i t 0 + d i 

t 0 + δ, b 
i 
max } . This indicates that, if the number of boarding passengers is larger than the allowable

boarding speed, then only b i max passengers can board the train in this time interval; otherwise, the waiting passengers at
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the initial time t 0 (i.e., n i t 0 
) and the new arrival passengers (i.e., d i 

t 0 + δ) will board the dwelling train. In the second time

interval, we derive the similar calculation, and we set ˆ b i 
t 0 +2 δ

= 0 if there is no dwelling train; otherwise, we have ˆ b i 
t 0 +2 δ

=
min { b i max , n 

i 
t 0 

+ d i 
t 0 + δ + d i 

t 0 +2 δ
− ˆ b i 

t 0 + δ} . The latter formula is the number of cumulative passengers at this station minus the

number of passengers who have already boarded the train in the former time intervals. We iteratively make the calculation

and assign each 

ˆ b i t until the end of time horizon t 0 + Mδ. It is obvious that the obtained solution 

ˆ b satisfies all the constraints

(28), (29), (32) in the primal problem (35) that are relevant to the decision variable b . Then, we summarize the procedure

of this heuristic algorithm in Algorithm 1 . 

Algorithm 1 A heuristic algorithm to construct a feasible solution. 

Step 1. Input the solutions x̄ , b̄ , and the time-variant passenger demands p (t) . 

Step 2. If x̄ and b̄ satisfy constraint (28), go to Step 4; otherwise, go to Step 3. 

Step 3. Do for i = 1 , . . . , 2 I; 

Step 3.1 Do for t = t 0 , . . . , t 0 + Mδ; 

Step 3.2 Make the following judgement: 

(a) if t = t 0 , set ˆ b i t = 0 ; 

(b) else if 
∑ 

k ∈K x̄ k iit ′ t = 0 , set ˆ b i t = 0 ; 

(c) else if t = t 0 + δ and 

∑ 

k ∈K x̄ k iit ′ t = 1 , calculate ˆ b i t by 

ˆ b i t = min { b i max , n 

i 
t 0 

+ 

2 I ∑ 

j= i 
δ · p i j (t 0 + δ) }; (42) 

(d) else if t � = t 0 + δ and 

∑ 

k ∈K x̄ k iit ′ t = 1 , calculate ˆ b i t by 

ˆ b i t = min { b i max , n 

i 
t 0 

+ 

t ∑ 

τ= t 0 + δ

2 I ∑ 

j= i 
δ · p i j (τ ) −

t−δ∑ 

τ= t 0 

ˆ b i τ } . (43) 

Step 4. Return the set of feasible solutions { ̂ b i t } and the corresponding objective of the primal problem. 

The developed Algorithm 1 takes a polynomial solution time of O( |I||T | ), which is very time-efficient for searching a

feasible solution to the primal problem. By inserting these feasible decision variables into the objective function of the

primal model (35) , we can obtain a feasible objective value, which serves as an upper bound of the true optimal objective. 

4.3. Updating Lagrangian multipliers 

Theoretically, if the objective of the Lagrangian dual problem equals to the upper bound of the primal problem, we can

return the corresponding feasible solution, which is guaranteed to be the optimal solution according to the duality theory.

Otherwise, we need to iteratively update the multipliers ρ based on the sub-gradient algorithm and the solutions of the

relaxed model. Here, we introduce two methods in this Lagrangian relaxation-based heuristic to terminate the solution

process: (i) if w > W max , in which w and W max denote the iteration index and the maximum pre-given iteration number,

the algorithm can be stopped; (ii) if the computational time exceeds the pre-determined time threshold T lim 

, the solution

process can be terminated. 

In this study, we first give a set of initial Lagrangian multipliers { (ρ i 
t ) 

w =0 } i ∈I,t∈T \{ t 0 } with values of 0. Then, we derive

a sub-gradient algorithm, which is widely used in Lagrangian relaxation approaches (e.g., Xie et al., 2016; Yang and Zhou,

2014 ) in order to iteratively update the Lagrangian multipliers. By using the sub-gradient algorithm, each Lagrangian multi-

plier (ρ i 
t ) 

w for t ∈ T \{ t 0 } and i ∈ I is updated to (ρ i 
t ) 

w +1 by 

(ρ i 
t ) 

w +1 = max 

{ 

(ρ i 
t ) 

w + λw (( ̄b i t ) 
w −

∑ 

k ∈K 
( ̄x k iit ′ t ) 

w b i max ) , 0 

} 

, ∀ i ∈ I, t ∈ T \{ t 0 } , (44) 

in which b̄ 

w and x̄ w are the optimal solutions of relaxed models in the w th iteration, and λw is the step size that is com-

puted in each iteration by 

λw = 

αw | UB 

w − LB 

w | ∑ 

i ∈I 
∑ 

t∈T \{ t 0 } (( ̄b 
i 
t ) 

w − ∑ 

k ∈K ( ̄x 
k 
iit ′ t ) 

w b i max ) 
2 
. (45) 

In the above equation, αw is the step parameter, UB w is the best known upper bound up to iteration w , and LB w is the best

potential lower bound up to iteration w found by CPLEX solver in the searching process. 



J. Yin et al. / Transportation Research Part B 97 (2017) 182–213 201 

Fig. 8. A simple bi-direction metro corridor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. Procedure of the LR-based algorithm 

Based on the introduction of Lagrangian relaxation scheme, the developed heuristic algorithm and the Lagrangian multi-

plier updating methods, we summarize the general procedure of LR-based solution process in Algorithm 2 . 

Algorithm 2 LR-based algorithm for energy-efficient metro train scheduling problem. 

Step 1. Input initial information, including the maximum number of fleet size, metro corridor parameters, set of train speed

profiles, time-variant passenger demands, dwelling time constraints, planning time horizon, etc. 

Step 2. Set the initial Lagrangian multipliers (ρ i 
t ) 

0 = 0 for each t ∈ T \{ t 0 } and i ∈ I . 

Step 3. Solve the subproblems 	( ρw ) and �( ρw ) and obtain solutions x̄ w , b̄ 

w 

and r̄ w . 

Step 4. Calculate the feasible solutions by using Algorithm 1, and update the upper bound. 

Step 5. Update the Lagrangian multipliers by the subgradientalgorithm using Eq. (44) and Eq. (45). 

Step 6. Go to Step 7 if satisfying one of the following conditions; otherwise, set w ← w + 1 and go to Step 3: 

(i) if w > W max , in which W max is the maximum iteration number; 

(ii) if the computational time exceeds the pre-determined time limit T lim 

. 

Step 7. Output the best upper bound and the corresponding feasible solutions. 

5. Numerical examples 

In this section, a series of numerical experiments, involving a small-scale case and a real-world case study on Beijing

Metro Yizhuang line, are implemented to illustrate the applications of the proposed models and algorithms. The proposed

Lagrangian relaxation-based heuristic framework is coded in Visual C++ 2012 on a Window 8 personal computer. The sub-

problems in the relaxed model are solved by IBM CPLEX 12.3 Academic Version on the same platform. 

5.1. A small-scale example 

In this example, we consider a bi-direction metro corridor with 8 stations, as shown in Fig. 8 . This metro corridor consists

of 2 power supply substations. Substation 1 covers segment 1, segment 2, segment 6 and segment 7, while substation 2

covers segment 3 and segment 5. The trains leave from station 1, arrive at station 4, then turn around and finally end at

station 8. For simplicity, the distance of each segment between any two adjacent stations is assumed to be 2.0 km. There

are two types of speed profiles for the running trains in every segment. Level 1 and level 2 speed profiles correspond to the

link travel times of 120 s and 150 s, respectively. In addition, the minimum headway between two adjacent trains is 180 s,

and the minimum and maximum dwelling times at each station are set as 30 s and 90 s, respectively. 

In order to test the effectiveness of the proposed models and solution algorithms, we derive a set of instances in this

small-scale metro corridor with different numbers of trains and timestamps. To better illustrate the parameter settings of

each instance, we use an instance index, i.e., N-K-S-M, in which K, S and M respectively represent the maximum numbers of

scheduled trains, stations and time intervals in the formulated space-time diagram. In this set of experiments, the minimum

time interval is set as 30 s and we suppose that the considered time horizon for train scheduling is [0, 30 × M ] (unit:

second). For example, the instance N-7-8-100 indicates that we schedule 7 trains in a metro corridor with 8 stations in

time horizon [0, 30 0 0] (unit: second). For illustrative purpose, Table 3 shows the average time-variant passenger demands

adopted in this set of experiments under the maximum length of time horizon 90 0 0 s. It is clear that the average passenger

demands are higher in time periods [30 0, 60 0] and [420 0, 540 0], while the average passenger demands are relatively lower

in the middle of the planning horizon. 
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Table 3 

The average time-variant passenger arrival rates. 

Time period (s) Average passenger arrival 

rates (passenger/min) 

0–300 1 .50 

30 0–60 0 4 .50 

60 0–120 0 3 .00 

120 0–240 0 1 .50 

240 0–360 0 0 .00 

360 0–420 0 1 .50 

420 0–480 0 3 .00 

480 0–540 0 4 .50 

540 0–60 0 0 1 .50 

60 0 0–720 0 3 .00 

720 0–810 0 1 .50 

810 0–90 0 0 0 .00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the experiments, we first use CPLEX solver to solve these two developed models, i.e., ETS model that ignores the

utilization of regenerative energy, and RTS model, which is a more complex model that further considers the utilization of

regenerative energy among the running trains. Thus, in the results, there is no regenerative energy for ETS model. Then, we

use the developed Lagrangian relaxation-based heuristic to solve the RTS model, and compare its performances, including

objective value (OB), total passenger waiting time (WT), energy consumption (EA), utilization of regenerative energy (RE),

relative gap and CPU times, with the results obtained by CPLEX solver. In this set of experiments, the two coefficients, i.e.,

w E and w T are set as 10.0 and 1.0, respectively. In addition, the maximum CPU time is limited to 7200 s, and after that time,

we stop CPLEX or LR algorithm to output the best results. 

Table 4 shows the computational results for 14 instances with different numbers of trains and planning time horizons, in

which we use CPLEX solver to solve both ETS and RTS models, and use the developed LR-based algorithm to solve the RTS

model. These three approaches are expressed in this table as ETS-CPLEX, RTS-CPLEX and RTS-LR, respectively. From experi-

mental results, we can see clearly that, under the same planning time horizon, when we add more trains (for example, from

instances N-2-8-110 to N-8-8-110), the total passenger waiting time is evidently decreased while the energy consumption

increases at the same time. This fact is consistent with the practical experiences that higher train departure frequency (or

shorter headway time) reduces passenger waiting time at the stations, which improves the service quality, but will poten-

tially increase the train operational costs. The gap returned by CPLEX solver for both ETS and RTS models with limited CPU

time (i.e., 7200 s) presents drastic variations for the tested instances (i.e., from about 3% to 92%). This is essentially because

of the large-scale decision variables due to the complexity of formulated models. In particular, the returned gap by solving

RTS model is larger than that of ETS model, since RTS model further considers the regenerative energy by introducing some

additional continuous decision variables, which makes the RTS model even more difficult to be solved. Interestingly, when

the planning time horizon is shorter than 4500 s (i.e., M ≤ 150), RTS model by CPLEX solver can usually achieve better

objective values than those of ETS model with the same computational time (i.e., 7200 s), since RTS model can reasonably

utilize the regenerative braking energy so as to reduce the objective value. Nevertheless, when we continue to increase the

planning time horizon, CPLEX solver gradually becomes unable to solve RTS model, leading to the worse result than that of

ETS model (e.g., see instances N-8-8-210, N-9-8-210, N-10-8-210). In addition, the returned gaps of these two models with

long time horizon become very large, indicating that CPLEX solver is very sensitive to the scale of planning time horizon for

the formulated models. Finally, when we continue to increase the planning time horizon, CPLEX solver fails to solve the for-

mulated models with 300 timestamps, and returns no feasible solution (represented by “NAN”, e.g., see instance N-15-8-300

for example). 

Then, we analyze the performance of the developed LR-based heuristic algorithm in solving RTS model with these tested

instances. It is easy to see that, LR-based algorithm takes much shorter computational time and obtains the results that are

very close to or better than those of CPLEX solver in the test instances with M = 110 . In particular, when we consider longer

time horizons (i.e., M ≥ 150), the LR-based algorithm performs much better than the CPLEX solver. For example, in instance

N-5-8-150, LR-based algorithm improves the objective values for about 10% in comparison with that of RTS model solved

by CPLEX solver, and the computational time of LR-based algorithm is still shorter than that of CPLEX solver. Moreover,

when we further consider larger instances with more trains and long time horizon (e.g., M ≥ 200), the RTS model cannot

return a feasible solution by using CPLEX in the limited computational time (i.e., 7200 s). Nevertheless, when M ≥ 200, the

developed LR algorithm can still be very effective in solving the RTS model, which obtains a very good solution within the

limited computational time. We take instance N-15-8-300 as an illustration, which schedules 15 trains in time horizon [0,

90 0 0] s. By running CPLEX solver for 7200 s, it still cannot find a feasible solution for both ETS and RTS models, while LR

algorithm returns a good solution within an acceptable computational time. In summary, these experiment results verify

that the effectiveness and efficiency of the LR heuristic algorithm are significantly better than those of CPLEX solver in

solving the developed models. 

For illustrative convenience, Fig. 9 plots the variation trends of the lower and best upper bounds for instance N-5-8-110

in the searching process with 60 iterations (here, lower bound is produced by CPLEX solver in each iteration). It is obvious
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Table 4 

Performance comparison for different instances with CPLEX and LR-based heuristic. 

Instance index WT (s) EA (J/Kg) RE (J/Kg) OB CPU time (s) Gap 

N-2-8-110 ETS-CPLEX 370440 1890 – 389340 7200 .14 14 .88% 

RTS-CPLEX 375390 1860 224 391750 7200 .51 39 .31% 

RTS-LR 375570 1890 0 394770 182 .3 –

N-3-8-110 ETS-CPLEX 2740 0 0 2910 – 303100 7200 .20 42 .34% 

RTS-CPLEX 275820 2820 80 303220 7200 .19 47 .44% 

RTS-LR 255340 2900 80 283540 561 .1 –

N-4-8-110 ETS-CPLEX 204660 3750 – 242160 7014 .69 30 .34% 

RTS-CPLEX 2130 0 0 3930 1020 242100 7234 .82 42 .07% 

RTS-LR 212310 3930 242 249190 623 .3 –

N-5-8-110 ETS-CPLEX 167430 4590 – 213330 7305 .74 22 .16% 

RTS-CPLEX 167250 4710 746 206890 7150 .28 31 .98% 

RTS-LR 167760 4710 314 211720 1323 .27 –

N-7-8-110 ETS-CPLEX 125700 6480 – 190500 7200 .33 9 .04% 

RTS-CPLEX 132900 6630 1436 184840 7159 .41 23 .01% 

RTS-LR 130830 6630 1310 184030 833 .3 –

N-8-8-110 ETS-CPLEX 120360 7530 – 195660 7200 .46 2 .89% 

RTS-CPLEX 123030 7590 1312 185810 7200 .34 31 .72% 

RTS-LR 120220 7460 402 190800 1123 .6 –

N-5-8-150 ETS-CPLEX 329240 4690 – 376140 7200 .18 38 .21% 

RTS-CPLEX 323580 4620 468 365100 7200 .05 62 .69% 

RTS-LR 288750 4470 242 331030 4899 .83 –

N-7-8-150 ETS-CPLEX 226130 6500 – 291130 7200 .46 37 .32% 

RTS-CPLEX 235380 6240 890 288880 7201 .99 51 .28% 

RTS-LR 217350 6500 410 278250 5342 .83 –

N-8-8-210 ETS-CPLEX 440260 7700 – 517260 7200 .92 45 .66% 

RTS-CPLEX 1154490 7640 638 1224510 7200 .18 85 .18% 

RTS-LR 437700 7700 427 510430 2323 .9 –

N-9-8-210 ETS-CPLEX 442380 8400 – 526380 7200 .99 48 .89% 

RTS-CPLEX 579990 9240 1060 661790 7201 .97 74 .21% 

RTS-LR 428580 8310 332 508360 2968 .9 –

N-10-8-210 ETS-CPLEX 456330 9060 – 546930 7202 .55 52 .02% 

RTS-CPLEX NAN NAN NAN NAN NAN NAN 

RTS-LR 416670 9130 388 504090 4811 .1 –

N-11-8-210 ETS-CPLEX 403260 9780 – 501060 7201 .19 69 .76% 

RTS-CPLEX NAN NAN NAN NAN NAN NAN 

RTS-LR 370500 9960 988 460220 6154 .28 –

N-7-8-300 ETS-CPLEX 1434180 6660 – 1500780 7202 .23 91 .59% 

RTS-CPLEX 97830 0 0 6480 852 9839280 7200 .09 99 .16% 

RTS-LR 1338090 6450 224 1400350 5446 .6 –

N-15-8-300 ETS-CPLEX NAN NAN NAN NAN NAN NAN 

RTS-CPLEX NAN NAN NAN NAN NAN NAN 

RTS-LR 510330 13470 970 635330 6888 .3 - 

Fig. 9. Lower and upper bound variations. 
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(a)Instance N-3-8-110: Obtained timetable by ETS model
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(b) Instance N-5-8-110: Obtained timetable by ETS model

0 500 1000 1500 2000 2500 3000
1

2

3

4

5

6

7

8

Time (s)

S
ta

tio
n 

nu
m

be
r

Train 1
Train 2
Train 3
Train 4
Train 5
Train 6
Train 7

(c) Instance N-7-8-110: Obtained timetable by ETS model
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(d) Instance N-3-8-110: Obtained timetable by RTS model
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(e) Instance N-5-8-110: Obtained timetable by RTS model
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(f) Instance N-7-8-110: Obtained timetable by RTS model

Fig. 10. Train schedule by CPLEX solver for different instances. 

 

 

 

 

 

 

 

 

that, the developed heuristic algorithm iteratively improves the solution quality and the best upper bound is achieved after

about 20 iterations. 

Fig. 10 depicts the obtained scheduling plans by CPLEX solver corresponding to instances N-3-8-110, N-5-8-110 and N-

7-8-110 in Table 4 . We illustrate the timetables of ETS and RTS models with maximum number of 3, 5, and 7 trains, re-

spectively. It is shown that, all the trains depart from the origin station at different timestamps one by one, turn-around at

station 4 and finally go back to station 1. In this process, the headway constraints are strictly guaranteed between adjacent

trains. We can see obviously from Fig. 10 b–e that, the departure frequencies are essentially consistent with the time-variant

passenger demands. For example, the passenger demands are set to be higher in time period [30 0, 120 0] s (see Table 3 ),

which correspond to the higher departure frequency and shorter departure headway. Apparently, dispatching more trains
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(a) Instance N-7-8-110: Obtained timetable with 7 trains
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(b) Instance N-9-8-210: Obtained timetable with 9 trains
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(c) Instance N-10-8-210: Obtained timetable with 10 trains
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(d) Instance N-15-8-300: Obtained timetable with 15 trains

Fig. 11. Train schedule by LR-based algorithm with different numbers of trains and time horizons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in high-demand periods can reduce the total waiting time of passengers. This also verifies that our formulated models can

adjust the train departure times in order to reduce the passenger waiting time at the stations. 

Fig. 11 shows the train scheduling plans by LR-based algorithm with different train scales and time horizons with respect

to instances N-7-8-110, N-9-8-210, N-10-8-210 and N-15-8-300 in Table 4 . These figures indicate the similar conclusion that

the larger passenger demands are consistent with higher train departure frequencies. For example, in Fig. 11 b and c, higher

departure frequency is associated with higher demands in time periods [30 0, 120 0] s and [420 0, 540 0] s, while the lower

departure frequency corresponds to the low demands in time period [240 0, 360 0] s. 

5.2. Numerical experiments on Beijing metro Yizhuang line 

In this example, we consider a real-world case study on the Beijing metro Yizhuang line. In the implementations, the

dynamic parameters (i.e., passengers’ time-variant origin-destination demands) are all taken from historical detected opera-

tion data. We next execute this set of experiments with different planning time horizons and numbers of in-service trains

to verify the effectiveness of the proposed LR-based approach for metro train scheduling problem. 

5.2.1. Experiment description and parameter settings 

The Yizhuang line is a bi-directional metro line with a total length of 23.3 km, and each direction consists of 13 stations

and 12 running segments (see Fig. 12 ). Some basic data settings in this set of experiments, including the distance of each

segment, the maximum and minimum dwelling time at each station, the planned running time in each segment, and the

covered segments of each power supply substation, are all illustrated in Table 5 . In addition, the other parameter settings

in the experiments are set as: the fleet size is 10, the minimal headway is h min = 180 s and the turnaround times at the

turnaround station and start terminus are set as T R k = 90 s and T A k = 150 s, respectively. In Beijing metro system, a type of

train named DKZ32 is widely used and its Davis parameters are listed in Table 6 for the following experiments ( Chen et al.,

2013 ). In this set of numerical experiments, we use the real-world passenger demand data at each station collected on
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Fig. 12. Illustration of Beijing metro Yizhuang line (Source: Google map). 

Table 5 

Some numerical characteristics in this case study. 

Station index & segment Length ( m ) Minimum dwelling 

time ( s ) 

Maximum dwelling 

time ( s ) 

Running time 

options ( s ) 

Substation 

index 

1 Songjia zhuang - Xiao cun 2641 30 90 210, 180, 150 1 

2 Xiao cun - Xiaohong men 1337 30 90 150, 120, 90 1 

3 Xiaohong men - Jiugong 2377 30 90 180, 150, 120 2 

4 Jiugong - Yizhuang qiao 1993 30 90 180, 150, 120 2 

5 Yizhuang qiao - Wenhua yuan 998 30 90 120, 90, 60 3 

6 Wenhua yuan - Wanyuan 1543 30 90 150, 120, 90 3 

7 Wanyuan - Rongjing 1285 30 90 150, 120, 90 3 

8 Rongjing - Rongchang 1360 30 90 150, 120, 90 4 

9 Rongchang - Tongjinan 2348 30 90 180, 150, 120 4 

10 Tongjinan - Jinghai 2274 30 90 180, 150, 120 5 

11 Jinghai - Ciqunan 2096 30 90 180, 150, 120 5 

12 Ciqunan - Ciqu 1290 30 90 150, 120, 90 6 

13 Turnaround - 30 90 90, 90, 90 - 

14 Ciqu - Ciqunan 1290 30 90 150, 120, 90 6 

15 Ciqunan - Jinghai 2096 30 90 180, 150, 120 5 

16 Jinghai - Tongjinan 2274 30 90 180, 150, 120 5 

17 Tongjinan - Rongchang 2348 30 90 180, 150, 120 4 

18 Rongchang - Rongjing 1360 30 90 150, 120, 90 4 

19 Rongjing - Wanyuan 1285 30 90 150, 120, 90 3 

20 Wanyuan - Wenhua yuan 1543 30 90 150, 120, 90 3 

21 Wenhua yuan - Yizhuang qiao 998 30 90 120, 90, 60 3 

22 Yizhuang qiao - Jiugong 1993 30 90 180, 150, 120 2 

23 Jiugong - Xiaohong men 2377 30 90 180, 150, 120 2 

24 Xiaohong men - Xiao cun 1337 30 90 150, 120, 90 1 

25 Xiao cun - Songjia zhuang 2641 30 90 210, 180, 150 1 

26 Terminal – 30 90 120, 120, 120 –

 

 

 

 

 

a weekend of October, 2014. The demand profiles at different stations are illustrated in Fig. 13 . It can be seen that the

passenger demand curve varies throughout a day, which is typically related to the different stations and service times. For

example, this figure explicitly expresses the peak-hours in the metro corridor with high demands around 8: 00 am and 17:

00 pm, while the demands are relatively low in the afternoon, for instance, from 13:00 pm to 16:00 pm. 

In the following experiments, we first consider different periods of planning time horizons with a fixed number of in-

service trains. For example, an instance with planning time period [7: 00 am, 10: 05 am] with 16 trips means that, the first
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Table 6 

Parameter settings in the numerical experiments. 

Parameters Symbol Value 

Train mass ( Kg ) M 1 .99 × 10 5 

Train capacity C k 1468 

Davis parameter θ a 1 . 36 × 10 −4 

Davis parameter θ b 1 . 45 × 10 −2 

Davis parameter θ c 1 .244 

Coefficient from kinetic energy to regenerative energy c r 0 .75 

Available energy percentage after transmission c a 0 .8 

Allowable passenger boarding speed (person/min) b i max 200 

Fig. 13. Passenger demand variations of Yizhuang line on a weekend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trip must begin after time 7: 00 am, and the last trip will end before time 10: 05 am at its destination. In this time period,

the passengers arrive at the stations according to the given time-variant passenger arrival rates mentioned above. Besides,

the discretized time interval in the space-time network is set as 30 s to balance the real-world conditions and computational

efficiency. 

5.2.2. Computational results 

In the experimental implementations for the real-world instance, we first try to use CPLEX solver to solve the developed

ETS and RTS models. But, when the planning time horizon is longer than one hour, e.g., the timestamp exceeds 200 with

more than 10 trains, the CPLEX solver can no longer provide even a feasible solution for the developed two models through

hours of computation because of the explosion of decision variables (0–1 variables, integer variables and continuous vari-

ables). Due to this fact, we only use the developed LR-based heuristic to solve the RTS model for scheduling trains in the

following experiments. In order to evaluate the performance of LR-based approach, we specifically derive two additional

timetables as benchmarks. The first timetable (denoted by E-timetable) focuses on the minimization of energy consump-

tion by scheduling all the trains with the lowest speed in every segment. The other timetable (denoted by T-timetable), in

contrast, makes more beneficial to the passengers, and the trains are scheduled with the fastest speed in every segment. In

addition, the departure frequency of these two timetables are set as constant values. Here, we consider three instances for

the train scheduling problem in three distinctive time periods, i.e., 7:00 to 9:55 am, 12:30 to 15:25 pm and 16:30 to 19:25

pm, which are indexed by instance 1, instance 2 and instance 3, respectively. Each time period consists of 350 time intervals

in the space-time network. For each instance, we schedule 16 trips, and the last trip (i.e., trip 16) needs to arrive at the

destination (i.e., start terminal) before the end of time horizon. 

Remark 5.1. We note that, since the trains are scheduled with the lowest speed, the E-timetable is essentially unavailable

in practical applications due to the fleet size constraints. In other words, train k + K p will possibly depart before train k

arrives, which violates the fleet size constraints. In this set of experiments, we only aim to compare the performances of

E-timetable with our proposed approach. So we neglect the fleet size constraints in the process of generating E-timetable. 
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Table 7 

Performance comparison of E-timetable, T-timetable and LR-based approach for different instances. 

Instance index WT (s) EA (KJ) RE (KJ) OB CPU time (h) 

Instance 1 E-timetable 8 .87 · 10 6 9 .57 · 10 6 1 .04 · 10 6 1 .74 · 10 7 –

7:00-9:55 T-timetable 7 .27 · 10 6 1 .49 · 10 7 4 .68 · 10 5 2 .17 · 10 7 –

K = 16 LR-based algorithm 6 .28 · 10 6 1 .054 · 10 7 7 .60 · 10 5 1 .61 · 10 7 5.9 

Instance 2 E-timetable 5 .82 · 10 6 9 .57 · 10 6 1 .04 · 10 6 1 .44 · 10 7 –

12 :30-15:25 T-timetable 3 .69 · 10 6 1 .49 · 10 7 4 .68 · 10 5 1 .81 · 10 7 –

K = 16 LR-based algorithm 3 .63 · 10 6 9 .73 · 10 6 8 .80 · 10 5 1 .25 · 10 7 5.2 

Instance 3 E-timetable 5 .11 · 10 6 9 .57 · 10 6 1 .04 · 10 6 1 .36 · 10 7 –

16 :30-19:25 T-timetable 2 .70 · 10 6 1 .49 · 10 7 4 .68 · 10 5 1 .71 · 10 7 –

K = 16 LR-based algorithm 2 .68 · 10 6 9 .89 · 10 6 7 .90 · 10 5 1 .18 · 10 7 5.3 

Fig. 14. The obtained timetable by our approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 demonstrates the computational results for T-timetable, E-timetable and LR-based algorithm for these three tested

scenarios. Among all these tested scenarios, we can see that, T-timetable consumes the most traction energy, while E-

timetable has the minimum traction energy consumption. This is obviously because that, T-timetable and E-timetable define

train running speed to be the highest and lowest, respectively, and higher running speed will increase the energy consump-

tion. With higher running speed, T-timetable typically can reduce the passenger waiting time, which is also consistent with

our practical experiences. In particular, the obtained timetables by using the LR-based algorithm yield the least passenger

waiting times and the best objective values in all these tests. The results also demonstrate the effectiveness of the proposed

metro train scheduling approaches with the consideration of time-variant passenger demands. Besides, it is interesting to

note that, the reduction of WT by LR-based algorithm is about 15% compared with T-timetable for instance 1, which is

much more obvious than the other two instances. One possible reason is that, the passenger demand varies dramatically

in morning peak-hours (like instance 1), while it keeps relatively flat in other hours of a day (like instances 2 and 3). In

conditions of relatively constant demands, the train timetable with fixed departure headway is potentially a good solution,

and therefore, the performance improvement of solutions by LR-based algorithm in such cases is not significantly evident. 

For illustration, we display the obtained timetable by LR-based algorithm, E-timetable and T-timetable of instance 1 in

Figs. 14 , 15 and 16 , respectively. It is obvious that, the headway times between adjacent trains for both E-timetable and

T-timetable are constant, while the trains are operated with the lowest speed and highest speed by E-timetable and T-

timetable, respectively. Differently, the LR-based algorithm derives an irregular timetable, in which the headway time is

varied in different time periods. For instance, the headway is a little larger in the first hour (i.e., 7:0 0–8:0 0 am), but it

becomes much shorter in the next hour (i.e., 8:0 0–9:0 0 am). This is essentially caused by the increased passenger demands

in this time period. In addition, we note that, the train dwelling time at each station and running time in each segment for

the obtained timetable are also different, which can potentially make benefits to the energy consumption and utilization of

regenerative energy. 
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Fig. 15. Regular timetable with lowest travel speed (E-timetable). 

Fig. 16. Regular timetable with highest travel speed (T-timetable). 

 

 

 

 

 

 

 

5.2.3. More experiments with different numbers of trips 

In order to further investigate the performance of the generated metro train timetables, we use the LR-based approach to

schedule trains with different numbers of trips, in which the parameter settings are the same to those in Section 5.2.1 . Also,

we are particularly interested in analyzing the variations of passenger waiting time and energy consumption with different

numbers of trips. In what follows, we only present the results in the morning period (i.e., 7:00–9:55 am in Table 7 ) due to

the page limitation. 

Fig. 17 a–d depict the values of total passenger waiting time, total energy consumption, objective functions and com-

putational times, respectively, with different numbers of trips by E-timetable, T-timetable and the timetable developed by

LR-based approach. First, we analyze the overall variation tendencies of waiting time and energy consumption with different
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(a) Passenger waiting time with different numbers of in-service trains (b) Energy consumption with different numbers of in-service trains

(c) Objective value with different numbers of in-service trains (d) Computational time with different numbers of in-service trains

Fig. 17. Performance value comparison with different numbers of in-service trains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

numbers of trains. In Fig. 17 a, it can be seen that, the passenger waiting times for all these three approaches are evidently

reduced if we increase the number of in-service trains. This is because that, more trains can shorten the headway time be-

tween adjacent trains and thus reduce the passenger waiting time at the stations. Being consistent with our experiences, we

can see a different tendency in Fig. 17 b that more trains lead to the larger energy consumption. Additionally, the increase

of energy consumption is not rigorously linear with respect to the number of in-service trains, as shown in this figure. This

is due to the consideration of utilized regenerative energy in the energy consumption calculation. 

In addition, comparing these three approaches (i.e., E-timetable, T-timetable and LR approach), we can see that, the value

of passenger waiting time by LR-based heuristics is much lower than those of the other two timetables. This indicates that,

by adjusting the train speed profiles and departure and arrival times of trains at each station, the passenger waiting time can

be reduced in comparison with the timetables with constant headway (i.e., E-timetable and T-timetable). With respect to the

energy consumption, it is clear that E-timetable achieves the best performance, since it is scheduled by the slowest speed

in every segment. Moreover, the energy consumption of LR-based approach is only a little higher than that of E-timetable,

and the energy consumption is nearly the same when the number of in-service trains increases to 17 and 18. 

Also, Fig. 17 c shows the objective values of E-timetable, T-timetable and the timetable generated by LR-based approach

with different numbers of in-service trains. In these results, the performance of developed LR-based approach is typically

better than those of E-timetable and T-timetable, which indicates the effectiveness of our proposed approaches. Besides, an

interesting phenomenon is that, the best objective values are achieved when the number of in-service trains equals to 14.

Thus, it is potentially concluded that, choosing 14 trains in this planning period can better balance the passenger waiting

time and energy consumption under the current weight coefficients. The computational times of LR-based approach are

shown in Fig. 17 d for different instances, in which it is easy to see that the computational time is much short with 10 in-

service trains, while it is increased to about 7 hours with 18 trains. This fact shows that, although the developed LR-based

approach is able to obtain a good solution in an acceptable time, it is still sensitive to the scale of the model for some large

instances. 
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6. Conclusion 

In this paper, we studied the metro train scheduling problem with dynamic demands to reduce the passenger waiting

time at stations and energy consumption for train operations. By using a space-time network diagram, we proposed two

(mixed) integer linear programming models to capture the time-variant demands and different travel speeds in the calcu-

lation of train energy consumption. Specifically, the first model was an integer linear programming model which aims to

jointly minimize the passenger waiting time and train traction energy consumption. The second model was formulated as

an MILP model that further considers the utilization of regenerative barking energy among trains in the same power sup-

ply substation. Due to the complexity of these models, a Lagrangian relaxation-based heuristic algorithm was particularly

developed in order to obtain a good solution within an acceptable computational time. 

To verify the effectiveness of the proposed train scheduling approach, two sets of numerical examples were implemented,

which include a small-scale example and a real-world instance of Beijing metro. The computational results showed that, for

small-scale instances, LR-based algorithm can achieve very close or better results in solving the models compared with

CPLEX solver, and the computational time is much shorter than that of CPLEX. For large-scale instances or real-world in-

stances, CPLEX solver could not provide even a feasible solution through several hours of computation, while LR-based

algorithm is able to obtain good solutions for these cases. Besides, the proposed metro train scheduling approach could

evidently reduce the total passenger waiting time especially in peak-hours, and kept relatively low energy consumption in

comparison with fixed-headway timetables. 

Our future research will focus on the following four major aspects. (1) Although we consider the passenger demands

to be dynamic in this study, the real-world passenger characteristics in metro systems can be even more complex, e.g.,

the day-to-day demand variations. Thus, further analyzing time-variant and random features of metro passenger demands,

and consequently extending our work to stochastic optimization models can be one of future research directions. (2) Some

constraints in the developed models (e.g., turnaround constraints, dwelling constraints) can be further embedded into the

formulated space-time network through introducing relevant space-time arcs, which subsequently requires a more efficient

algorithm to speed up the scheduling process for solving large-scale problems. (3) As the computational results have shown

that, an appropriate scale of in-service trains can achieve better trade-off between service quality and energy consumption,

more analyses on the performance indexes can be taken into consideration in the future researches. (4) In this study, we

only consider the train scheduling problem in a single metro corridor. Our further research will also focus on the coordinated

timetable scheduling problem for a metro network, in which some other important indicators, such as the waiting time of

transfer passengers and utilization of regenerative braking energy from other metro corridors, can be also considered to

realize a network-optimization-based operation strategy. 
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